George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Sci Robot. 2024 Mar 20;9(88):eadi8852. doi: 10.1126/scirobotics.adi8852.
Robotic lower-limb exoskeletons can augment human mobility, but current systems require extensive, context-specific considerations, limiting their real-world viability. Here, we present a unified exoskeleton control framework that autonomously adapts assistance on the basis of instantaneous user joint moment estimates from a temporal convolutional network (TCN). When deployed on our hip exoskeleton, the TCN achieved an average root mean square error of 0.142 newton-meters per kilogram across 35 ambulatory conditions without any user-specific calibration. Further, the unified controller significantly reduced user metabolic cost and lower-limb positive work during level-ground and incline walking compared with walking without wearing the exoskeleton. This advancement bridges the gap between in-lab exoskeleton technology and real-world human ambulation, making exoskeleton control technology viable for a broad community.
机器人下肢外骨骼可以增强人类的活动能力,但当前的系统需要广泛的、特定于上下文的考虑因素,限制了它们在现实世界中的可行性。在这里,我们提出了一个统一的外骨骼控制框架,该框架基于时间卷积网络(TCN)即时用户关节力矩估计值自主适应辅助。当将 TCN 部署到我们的髋关节外骨骼上时,在 35 种步行状态下,TCN 的平均均方根误差为每公斤 0.142 牛顿米,而无需任何用户特定的校准。此外,与不穿外骨骼行走相比,统一控制器显著降低了平地和斜坡行走时的用户代谢成本和下肢正功。这一进展弥合了实验室外骨骼技术与现实世界人类活动之间的差距,使外骨骼控制技术对更广泛的人群具有可行性。