Shao Zhuchen, Sengupta Sourya, Anastasio Mark A, Li Hua
University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States.
University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States.
J Med Imaging (Bellingham). 2025 Nov;12(6):061403. doi: 10.1117/1.JMI.12.6.061403. Epub 2025 Mar 20.
Automated segmentation and classification of the cell nuclei in microscopic images is crucial for disease diagnosis and tissue microenvironment analysis. Given the difficulties in acquiring large labeled datasets for supervised learning, semi-supervised methods offer alternatives by utilizing unlabeled data alongside labeled data. Effective semi-supervised methods to address the challenges of extremely limited labeled data or diverse datasets with varying numbers and types of annotations remain under-explored.
Unlike other semi-supervised learning methods that iteratively use labeled and unlabeled data for model training, we introduce a semi-supervised learning framework that combines a latent diffusion model (LDM) with a transformer-based decoder, allowing for independent usage of unlabeled data to optimize their contribution to model training. The model is trained based on a sequential training strategy. LDM is trained in an unsupervised manner on diverse datasets, independent of cell nuclei types, thereby expanding the training data and enhancing training performance. The pre-trained LDM serves as a powerful feature extractor to support the transformer-based decoder's supervised training on limited labeled data and improve final segmentation performance. In addition, the paper explores a collaborative learning strategy to enhance segmentation performance on out-of-distribution (OOD) data.
Extensive experiments conducted on four diverse datasets demonstrated that the proposed framework significantly outperformed other semi-supervised and supervised methods for both in-distribution and OOD cases. Through collaborative learning with supervised methods, diffusion model and transformer decoder-based segmentation (DTSeg) achieved consistent performance across varying cell types and different amounts of labeled data.
The proposed DTSeg framework addresses cell nuclei segmentation under limited labeled data by integrating unsupervised LDM training on diverse unlabeled datasets. Collaborative learning demonstrated effectiveness in enhancing the generalization capability of DTSeg to achieve superior results across diverse datasets and cases. Furthermore, the method supports multi-channel inputs and demonstrates strong generalization to both in-distribution and OOD scenarios.
对微观图像中的细胞核进行自动分割和分类对于疾病诊断和组织微环境分析至关重要。鉴于获取用于监督学习的大型标记数据集存在困难,半监督方法通过将未标记数据与标记数据一起使用提供了替代方案。针对标记数据极其有限或具有不同数量和类型注释的多样化数据集所带来的挑战,有效的半监督方法仍有待探索。
与其他迭代使用标记和未标记数据进行模型训练的半监督学习方法不同,我们引入了一种半监督学习框架,该框架将潜在扩散模型(LDM)与基于Transformer的解码器相结合,允许独立使用未标记数据以优化其对模型训练的贡献。该模型基于顺序训练策略进行训练。LDM在各种数据集上以无监督方式进行训练,与细胞核类型无关,从而扩展了训练数据并提高了训练性能。预训练的LDM作为强大的特征提取器,支持基于Transformer的解码器在有限标记数据上进行监督训练,并提高最终分割性能。此外,本文探索了一种协作学习策略,以提高对分布外(OOD)数据的分割性能。
在四个不同数据集上进行的广泛实验表明,所提出的框架在分布内和分布外情况下均显著优于其他半监督和监督方法。通过与监督方法的协作学习,基于扩散模型和Transformer解码器的分割(DTSeg)在不同细胞类型和不同数量的标记数据上实现了一致的性能。
所提出的DTSeg框架通过在各种未标记数据集上集成无监督LDM训练来解决有限标记数据下的细胞核分割问题。协作学习证明了在增强DTSeg的泛化能力方面的有效性,从而在各种数据集和情况下取得了优异的结果。此外,该方法支持多通道输入,并在分布内和分布外场景中均表现出强大的泛化能力。