Suppr超能文献

基于扩散模型和协同学习的细胞核半监督语义分割

Semi-supervised semantic segmentation of cell nuclei with diffusion model and collaborative learning.

作者信息

Shao Zhuchen, Sengupta Sourya, Anastasio Mark A, Li Hua

机构信息

University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States.

University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States.

出版信息

J Med Imaging (Bellingham). 2025 Nov;12(6):061403. doi: 10.1117/1.JMI.12.6.061403. Epub 2025 Mar 20.

Abstract

PURPOSE

Automated segmentation and classification of the cell nuclei in microscopic images is crucial for disease diagnosis and tissue microenvironment analysis. Given the difficulties in acquiring large labeled datasets for supervised learning, semi-supervised methods offer alternatives by utilizing unlabeled data alongside labeled data. Effective semi-supervised methods to address the challenges of extremely limited labeled data or diverse datasets with varying numbers and types of annotations remain under-explored.

APPROACH

Unlike other semi-supervised learning methods that iteratively use labeled and unlabeled data for model training, we introduce a semi-supervised learning framework that combines a latent diffusion model (LDM) with a transformer-based decoder, allowing for independent usage of unlabeled data to optimize their contribution to model training. The model is trained based on a sequential training strategy. LDM is trained in an unsupervised manner on diverse datasets, independent of cell nuclei types, thereby expanding the training data and enhancing training performance. The pre-trained LDM serves as a powerful feature extractor to support the transformer-based decoder's supervised training on limited labeled data and improve final segmentation performance. In addition, the paper explores a collaborative learning strategy to enhance segmentation performance on out-of-distribution (OOD) data.

RESULTS

Extensive experiments conducted on four diverse datasets demonstrated that the proposed framework significantly outperformed other semi-supervised and supervised methods for both in-distribution and OOD cases. Through collaborative learning with supervised methods, diffusion model and transformer decoder-based segmentation (DTSeg) achieved consistent performance across varying cell types and different amounts of labeled data.

CONCLUSIONS

The proposed DTSeg framework addresses cell nuclei segmentation under limited labeled data by integrating unsupervised LDM training on diverse unlabeled datasets. Collaborative learning demonstrated effectiveness in enhancing the generalization capability of DTSeg to achieve superior results across diverse datasets and cases. Furthermore, the method supports multi-channel inputs and demonstrates strong generalization to both in-distribution and OOD scenarios.

摘要

目的

对微观图像中的细胞核进行自动分割和分类对于疾病诊断和组织微环境分析至关重要。鉴于获取用于监督学习的大型标记数据集存在困难,半监督方法通过将未标记数据与标记数据一起使用提供了替代方案。针对标记数据极其有限或具有不同数量和类型注释的多样化数据集所带来的挑战,有效的半监督方法仍有待探索。

方法

与其他迭代使用标记和未标记数据进行模型训练的半监督学习方法不同,我们引入了一种半监督学习框架,该框架将潜在扩散模型(LDM)与基于Transformer的解码器相结合,允许独立使用未标记数据以优化其对模型训练的贡献。该模型基于顺序训练策略进行训练。LDM在各种数据集上以无监督方式进行训练,与细胞核类型无关,从而扩展了训练数据并提高了训练性能。预训练的LDM作为强大的特征提取器,支持基于Transformer的解码器在有限标记数据上进行监督训练,并提高最终分割性能。此外,本文探索了一种协作学习策略,以提高对分布外(OOD)数据的分割性能。

结果

在四个不同数据集上进行的广泛实验表明,所提出的框架在分布内和分布外情况下均显著优于其他半监督和监督方法。通过与监督方法的协作学习,基于扩散模型和Transformer解码器的分割(DTSeg)在不同细胞类型和不同数量的标记数据上实现了一致的性能。

结论

所提出的DTSeg框架通过在各种未标记数据集上集成无监督LDM训练来解决有限标记数据下的细胞核分割问题。协作学习证明了在增强DTSeg的泛化能力方面的有效性,从而在各种数据集和情况下取得了优异的结果。此外,该方法支持多通道输入,并在分布内和分布外场景中均表现出强大的泛化能力。

相似文献

1
Semi-supervised semantic segmentation of cell nuclei with diffusion model and collaborative learning.
J Med Imaging (Bellingham). 2025 Nov;12(6):061403. doi: 10.1117/1.JMI.12.6.061403. Epub 2025 Mar 20.
2
Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.
J Magn Reson Imaging. 2025 Jun;61(6):2469-2479. doi: 10.1002/jmri.29686. Epub 2025 Jan 10.
3
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
5
Human gaze-based dual teacher guidance learning for semi-supervised medical image segmentation.
Neural Netw. 2025 Jul 13;192:107865. doi: 10.1016/j.neunet.2025.107865.
8
DiffCNN: A collaborative framework of diffusion model and CNN for semi-supervised medical image segmentation.
Neural Netw. 2025 Nov;191:107813. doi: 10.1016/j.neunet.2025.107813. Epub 2025 Jun 25.
9
FL-W3S: Cross-domain federated learning for weakly supervised semantic segmentation of white blood cells.
Int J Med Inform. 2025 Mar;195:105806. doi: 10.1016/j.ijmedinf.2025.105806. Epub 2025 Jan 23.
10
Segment Together: A Versatile Paradigm for Semi-Supervised Medical Image Segmentation.
IEEE Trans Med Imaging. 2025 Jul;44(7):2948-2959. doi: 10.1109/TMI.2025.3556310.

本文引用的文献

1
UNSEG: unsupervised segmentation of cells and their nuclei in complex tissue samples.
Commun Biol. 2024 Aug 30;7(1):1062. doi: 10.1038/s42003-024-06714-4.
2
The multimodality cell segmentation challenge: toward universal solutions.
Nat Methods. 2024 Jun;21(6):1103-1113. doi: 10.1038/s41592-024-02233-6. Epub 2024 Mar 26.
3
Learning with limited annotations: A survey on deep semi-supervised learning for medical image segmentation.
Comput Biol Med. 2024 Feb;169:107840. doi: 10.1016/j.compbiomed.2023.107840. Epub 2023 Dec 16.
4
Diffusion models in medical imaging: A comprehensive survey.
Med Image Anal. 2023 Aug;88:102846. doi: 10.1016/j.media.2023.102846. Epub 2023 May 23.
5
Semi-supervised nuclei segmentation based on multi-edge features fusion attention network.
PLoS One. 2023 May 25;18(5):e0286161. doi: 10.1371/journal.pone.0286161. eCollection 2023.
6
Diffusion Models in Vision: A Survey.
IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):10850-10869. doi: 10.1109/TPAMI.2023.3261988. Epub 2023 Aug 7.
7
Cellpose 2.0: how to train your own model.
Nat Methods. 2022 Dec;19(12):1634-1641. doi: 10.1038/s41592-022-01663-4. Epub 2022 Nov 7.
8
Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency.
Med Image Anal. 2022 Aug;80:102517. doi: 10.1016/j.media.2022.102517. Epub 2022 Jun 15.
9
A survey on graph-based deep learning for computational histopathology.
Comput Med Imaging Graph. 2022 Jan;95:102027. doi: 10.1016/j.compmedimag.2021.102027. Epub 2021 Dec 21.
10
Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning.
Nat Biotechnol. 2022 Apr;40(4):555-565. doi: 10.1038/s41587-021-01094-0. Epub 2021 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验