Radford Thomas W, Wiecha Peter R, Politi Alberto, Zeimpekis Ioannis, Muskens Otto L
School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
LAAS, Université de Toulouse, CNRS, 31031, Toulouse, France.
ACS Photonics. 2025 Feb 12;12(3):1480-1493. doi: 10.1021/acsphotonics.4c02081. eCollection 2025 Mar 19.
The development of low-loss reconfigurable integrated optical devices enables further research into technologies including photonic signal processing, analogue quantum computing, and optical neural networks. Here, we introduce digital patterning of coupled waveguide arrays as a platform capable of implementing unitary matrix operations. Determining the required device geometry for a specific optical output is computationally challenging and requires a robust and versatile inverse design protocol. In this work we present an approach using high speed neural network surrogate-based gradient optimization, capable of predicting patterns of refractive index perturbations based on switching of the ultralow loss chalcogenide phase change material, antimony triselinide (SbSe). Results for a 3 × 3 silicon waveguide array are presented, demonstrating control of both amplitude and phase for each transmission matrix element. Network performance is studied using neural network optimization tools such as data set augmentation and supplementation with random noise, resulting in an average fidelity of 0.94 for unitary matrix targets. Our results show that coupled waveguide arrays with perturbation patterns offer new routes for achieving programmable unitary operators, or Hamiltonians for quantum simulators, with a reduced footprint compared to conventional interferometer-mesh technology.
低损耗可重构集成光学器件的发展推动了对包括光子信号处理、模拟量子计算和光学神经网络在内的技术的进一步研究。在此,我们引入耦合波导阵列的数字图案化,作为一个能够实现幺正矩阵运算的平台。确定特定光输出所需的器件几何形状在计算上具有挑战性,并且需要一个强大且通用的逆向设计协议。在这项工作中,我们提出了一种基于高速神经网络代理的梯度优化方法,该方法能够根据超低损耗硫族化物相变材料三硒化锑(SbSe)的切换来预测折射率扰动模式。给出了3×3硅波导阵列的结果,展示了对每个传输矩阵元素的幅度和相位的控制。使用神经网络优化工具(如数据集增强和随机噪声补充)研究了网络性能,对于幺正矩阵目标,平均保真度达到了0.94。我们的结果表明,具有扰动模式的耦合波导阵列为实现可编程幺正算符或量子模拟器的哈密顿量提供了新途径,与传统干涉仪网格技术相比,其占地面积更小。