Fried Juliana Coraor, Johnson Natasha R, Pelletier Andrea, Landman Adam, Bartz Deborah
Acad Med. 2025 Jul 1;100(7):769-775. doi: 10.1097/ACM.0000000000006047. Epub 2025 Mar 24.
Artificial intelligence (AI) provides an opportunity to streamline tasks within academic medicine. Generative AI (genAI) models, specifically, have the capacity to generate new written content, follow detailed instructions for product improvement, and incorporate content from supplemental data sources. While a part of the professional responsibility of faculty in academic medicine, writing letters of recommendation (LORs) is often time consuming and repetitive candidate to candidate. Yet, crafting these letters well is paramount to convey an applicant's unique attributes in a time when pass/fail grading and remote interviews are increasingly common.In this article, the authors provide an approachable framework for the ethical use of genAI to assist with writing LORs in academic medicine. They briefly discuss the fundamental structure of genAI, the advantages between several genAI models specifically for the task of letter writing, privacy concerns that can develop when using genAI, iterative methods to develop effective prompts to craft letter drafts, personalization of finalized content, genAI use to identify bias, and appropriate documentation of AI usage.Once practiced, this process can prevent the need for shortcuts, such as copying and pasting from CVs or reusing previously written letters between candidates, that currently sacrifice letter quality to reduce writing time. Ethical use, privacy, and disclosure necessitate a deliberate framework for the use of genAI in letter writing. Future research is needed to inform the development of a specific AI model to generate LORs. The framework presented here provides faculty with the steps needed to begin incorporating genAI into their letter writing practice.
人工智能(AI)为优化学术医学领域的任务提供了契机。具体而言,生成式人工智能(genAI)模型有能力生成新的书面内容,遵循详细的产品改进说明,并整合来自补充数据源的内容。虽然撰写推荐信(LOR)是学术医学领域教师职业责任的一部分,但逐一对候选人撰写推荐信往往既耗时又重复。然而,在及格/不及格评分和远程面试日益普遍的当下,精心撰写这些推荐信对于传达申请人的独特特质至关重要。在本文中,作者提供了一个便于使用的框架,用于合乎道德地使用genAI协助撰写学术医学领域的推荐信。他们简要讨论了genAI的基本结构、几种专门用于撰写推荐信任务的genAI模型之间的优势、使用genAI时可能出现的隐私问题、开发有效提示以撰写信件草稿的迭代方法、最终内容的个性化、使用genAI识别偏差以及AI使用的适当记录。一旦熟练掌握,这个过程可以避免采取一些捷径,比如从简历中复制粘贴或在不同候选人之间重复使用之前写好的信件,而目前这些捷径是以牺牲信件质量来减少写作时间的。合乎道德的使用、隐私和披露需要一个在撰写推荐信时使用genAI的审慎框架。需要未来的研究为开发专门用于生成推荐信的特定AI模型提供信息。这里提出的框架为教师提供了将genAI纳入其推荐信撰写实践所需的步骤。