Rehman Zia Ur, Ahmad Shabir, Ullah Hameed, Alqarni Sara A, Yao Shanshan, Khan Khalid Ali, Zaki Magdi E A
Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University Zhenjiang 212013 P. R. China
Department of Chemistry, Hazara University Mansehra-21120 Khyber Pakhtunkhwa Pakistan.
RSC Adv. 2025 Mar 24;15(11):8740-8749. doi: 10.1039/d4ra07239a. eCollection 2025 Mar 17.
This research examines the synthesis of CoO-MWCNTs nano-hybrid structures and their incorporation into PVDF polymer nanocomposite thin films the solution casting method. The study comprehensively characterizes the structural, thermal, and electrical properties of the resulting nanocomposites using techniques such as SEM, XRD, FTIR, TGA, TDA, DSC, and impedance spectroscopy. XRD confirmed the crystalline structure and phase transition of the PVDF/CoO-MWCNTs nanocomposites, while FTIR analysis revealed the presence of α- and β-phases of PVDF. TGA, TDA, and DSC results revealed enhanced thermal stability, highlighting the potential for high-temperature applications. Notably, the dielectric properties significantly improved at 0.5 wt% CoO and 0.3 wt% MWCNTs. The electrical conductivity of the nanocomposites increased with higher nano-hybrid content, owing to strong interactions between the PVDF polymer and nano-fillers. This work provides insight into the development of advanced nanocomposites with superior thermal and electrical properties, which could be used in electronic and energy storage devices. The novelty of this study lies in the effective combination of CoO and MWCNTs to enhance the properties of PVDF, offering a promising material for future industrial applications.
本研究通过溶液浇铸法研究了CoO-MWCNTs纳米杂化结构的合成及其在聚偏氟乙烯(PVDF)聚合物纳米复合薄膜中的掺入。该研究使用扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、热重分析(TGA)、热重-差示扫描量热联用(TDA)、差示扫描量热法(DSC)和阻抗谱等技术全面表征了所得纳米复合材料的结构、热性能和电性能。XRD证实了PVDF/CoO-MWCNTs纳米复合材料的晶体结构和相变,而FTIR分析揭示了PVDF的α相和β相的存在。TGA、TDA和DSC结果显示热稳定性增强,突出了其在高温应用中的潜力。值得注意的是,在CoO含量为0.5 wt%和MWCNTs含量为0.3 wt%时,介电性能显著改善。由于PVDF聚合物与纳米填料之间的强相互作用,纳米复合材料的电导率随着纳米杂化含量的增加而提高。这项工作为开发具有优异热性能和电性能的先进纳米复合材料提供了见解,这些纳米复合材料可用于电子和能量存储设备。本研究的新颖之处在于有效结合CoO和MWCNTs以增强PVDF的性能,为未来工业应用提供了一种有前景的材料。