Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA.
Chem Soc Rev. 2022 Oct 31;51(21):9127-9173. doi: 10.1039/d2cs00618a.
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
新兴的无缝合伤口闭合技术已经引领了伤口管理的范式转变。最先进的生物材料提供了生物相容性和可生物降解的平台,能够实现快速止血的高内聚性(韧性)和附着力,以及对可植入设备的牢固附着。坚韧的生物附着力源于内聚和粘附相互作用的协同贡献。本综述为开发坚韧的粘合性手术密封剂提供了生物大分子设计路线图。我们讨论了一系列引入韧性和附着力的材料和方法。通过引入强但动态的分子间和分子内相互作用,主要利用坚韧和有弹性的聚合物,这可以通过聚合物链设计或使用交联调节剂来实现。此外,还进行了许多努力来促进水下附着——通过共价/非共价键,或者通过组织界面处的微观/宏观互锁机制。为此目的的材料设置和功能添加剂以及相关的表征方法进行了综述。还讨论了不同材料及其性能进行公平比较的测量和报告需求。最后,强调了开发坚韧的生物粘合性手术密封剂的未来方向和进一步的研究机会。