Bayazidi Shnoo, Moradi Ghobad, Masoumi Safdar, Setarehdan Seyed Amin, Baradaran Hamid Reza
Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
Epidemiology, Endocrine and Metabolic Disorders Research Center, Tehran University of Medical Sciences, Tehran, Iran.
J Diabetes Metab Disord. 2025 Mar 22;24(1):88. doi: 10.1007/s40200-025-01576-x. eCollection 2025 Jun.
This study aimed to implement a multi-state risk prediction model to predict the progression of COVID-19 cases among hospitalized patients in Kurdistan province by analyzing hospital care data.
This retrospective analysis consisted of data from 17,286 patients admitted to hospitals with COVID-19 from March 23, 2019, to December 19, 2021, in various areas in the Kurdistan province. A multi-state prediction model was used to show that each transition is predicted by a different set of variables. These variables include underlying diseases (like diabetes, hypertension, etc.) and sociodemographic information (like sex and age). Model aims to predict the likelihood of recovery, the need for critical care intervention (e.g., transfer to isolation units or the ICU), or exits from the hospitalization course. We performed the statistical analysis using R software and the mstate package.
Of the hospitalized patients studied, 5.6% died of the disease, 6.6% were admitted to ICUs, and 38.72% were treated in isolation units. Mortality rates in general wards, isolation units, and the ICU were 3.48%, 4.56%, and 26.6%, respectively. Significant predictors for ICU admission include age over 60 years (HR: 1.46, 95% CI 1.37-1.55), kidney-related conditions (HR: 2.19, 95% CI 1.65-2.91), cardiovascular diseases (HR: 1.68, 95% CI 1.46-1.94), lung disease (HR: 1.89,95% CI 1.43-2.05), and cancer (HR: 2.46,95% CI 1.77-3.41). The likelihood of in-hospital death is significantly increased by age over 60 years (HR: 2.40, 95% CI 2.09-2.76), diabetes (HR: 1.97, 95% CI 1.45-2.68), high blood pressure (HR: 2.30, 95% CI 1.78-2.97), and history of heart disease (HR: 3.01, 95% CI 2.29-3.95).
The model helps the provider and policymakers to make an informed decision depending on patient management and resource allocation within the health care systems.
本研究旨在通过分析医院护理数据,实施一种多状态风险预测模型,以预测库尔德斯坦省住院患者中新冠病毒病(COVID-19)病例的进展情况。
这项回顾性分析包括2019年3月23日至2021年12月19日期间库尔德斯坦省各地区因COVID-19入院的17286例患者的数据。使用多状态预测模型来表明每次转变由不同组变量预测。这些变量包括基础疾病(如糖尿病、高血压等)和社会人口学信息(如性别和年龄)。该模型旨在预测康复的可能性、重症监护干预的需求(例如,转至隔离病房或重症监护室)或出院情况。我们使用R软件和mstate软件包进行统计分析。
在研究的住院患者中,5.6%死于该疾病,6.6%被收入重症监护室,38.72%在隔离病房接受治疗。普通病房、隔离病房和重症监护室的死亡率分别为3.48%、4.56%和26.6%。入住重症监护室的显著预测因素包括60岁以上(风险比:1.46,95%置信区间1.37 - 1.55)、肾脏相关疾病(风险比:2.19,95%置信区间1.65 - 2.91)、心血管疾病(风险比:1.68,95%置信区间1.46 - 1.94)、肺部疾病(风险比:1.89,95%置信区间1.43 - 2.05)和癌症(风险比:2.46,95%置信区间1.77 - 3.41)。60岁以上(风险比:2.40,95%置信区间2.09 - 2.76)、糖尿病(风险比:1.97,95%置信区间1.45 - 2.68)、高血压(风险比:2.30,95%置信区间1.78 - 2.97)和心脏病史(风险比:3.01,95%置信区间2.29 - 3.95)会显著增加院内死亡的可能性。
该模型有助于医疗服务提供者和政策制定者根据医疗系统内的患者管理和资源分配做出明智决策。