Suppr超能文献

使用多状态模型预测库尔德斯坦省住院患者的COVID-19病情进展。

Predicting COVID-19 progression in hospitalized patients in Kurdistan Province using a multi-state model.

作者信息

Bayazidi Shnoo, Moradi Ghobad, Masoumi Safdar, Setarehdan Seyed Amin, Baradaran Hamid Reza

机构信息

Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.

Epidemiology, Endocrine and Metabolic Disorders Research Center, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

J Diabetes Metab Disord. 2025 Mar 22;24(1):88. doi: 10.1007/s40200-025-01576-x. eCollection 2025 Jun.

Abstract

OBJECTIVES

This study aimed to implement a multi-state risk prediction model to predict the progression of COVID-19 cases among hospitalized patients in Kurdistan province by analyzing hospital care data.

METHODS

This retrospective analysis consisted of data from 17,286 patients admitted to hospitals with COVID-19 from March 23, 2019, to December 19, 2021, in various areas in the Kurdistan province. A multi-state prediction model was used to show that each transition is predicted by a different set of variables. These variables include underlying diseases (like diabetes, hypertension, etc.) and sociodemographic information (like sex and age). Model aims to predict the likelihood of recovery, the need for critical care intervention (e.g., transfer to isolation units or the ICU), or exits from the hospitalization course. We performed the statistical analysis using R software and the mstate package.

RESULTS

Of the hospitalized patients studied, 5.6% died of the disease, 6.6% were admitted to ICUs, and 38.72% were treated in isolation units. Mortality rates in general wards, isolation units, and the ICU were 3.48%, 4.56%, and 26.6%, respectively. Significant predictors for ICU admission include age over 60 years (HR: 1.46, 95% CI 1.37-1.55), kidney-related conditions (HR: 2.19, 95% CI 1.65-2.91), cardiovascular diseases (HR: 1.68, 95% CI 1.46-1.94), lung disease (HR: 1.89,‏95% CI 1.43-2.05), and cancer (HR: 2.46,‏95% CI 1.77-3.41). The likelihood of in-hospital death is significantly increased by age over 60 years (HR: 2.40, 95% CI 2.09-2.76), diabetes (HR: 1.97, 95% CI 1.45-2.68), high blood pressure (HR: 2.30, 95% CI 1.78-2.97), and history of heart disease (HR: 3.01, 95% CI 2.29-3.95).

CONCLUSION

The model helps the provider and policymakers to make an informed decision depending on patient management and resource allocation within the health care systems.

摘要

目的

本研究旨在通过分析医院护理数据,实施一种多状态风险预测模型,以预测库尔德斯坦省住院患者中新冠病毒病(COVID-19)病例的进展情况。

方法

这项回顾性分析包括2019年3月23日至2021年12月19日期间库尔德斯坦省各地区因COVID-19入院的17286例患者的数据。使用多状态预测模型来表明每次转变由不同组变量预测。这些变量包括基础疾病(如糖尿病、高血压等)和社会人口学信息(如性别和年龄)。该模型旨在预测康复的可能性、重症监护干预的需求(例如,转至隔离病房或重症监护室)或出院情况。我们使用R软件和mstate软件包进行统计分析。

结果

在研究的住院患者中,5.6%死于该疾病,6.6%被收入重症监护室,38.72%在隔离病房接受治疗。普通病房、隔离病房和重症监护室的死亡率分别为3.48%、4.56%和26.6%。入住重症监护室的显著预测因素包括60岁以上(风险比:1.46,95%置信区间1.37 - 1.55)、肾脏相关疾病(风险比:2.19,95%置信区间1.65 - 2.91)、心血管疾病(风险比:1.68,95%置信区间1.46 - 1.94)、肺部疾病(风险比:1.89,95%置信区间1.43 - 2.05)和癌症(风险比:2.46,95%置信区间1.77 - 3.41)。60岁以上(风险比:2.40,95%置信区间2.09 - 2.76)、糖尿病(风险比:1.97,95%置信区间1.45 - 2.68)、高血压(风险比:2.30,95%置信区间1.78 - 2.97)和心脏病史(风险比:3.01,95%置信区间2.29 - 3.95)会显著增加院内死亡的可能性。

结论

该模型有助于医疗服务提供者和政策制定者根据医疗系统内的患者管理和资源分配做出明智决策。

相似文献

6
SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19.用于治疗 COVID-19 的 SARS-CoV-2 中和单克隆抗体。
Cochrane Database Syst Rev. 2021 Sep 2;9(9):CD013825. doi: 10.1002/14651858.CD013825.pub2.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验