Suppr超能文献

使用深度学习的激光诱导正向转移成像。

Laser induced forward transfer imaging using deep learning.

作者信息

Grant-Jacob James A, Zervas Michalis N, Mills Ben

机构信息

University of Southampton, Southampton, UK.

出版信息

Discov Appl Sci. 2025;7(4):254. doi: 10.1007/s42452-025-06679-x. Epub 2025 Mar 22.

Abstract

A novel approach for improving the accuracy and efficiency of laser-induced forward transfer (LIFT), through the application of deep learning techniques is presented. By training a neural network on a dataset of images of donor and receiver substrates, the appearance of copper droplets deposited onto the receiver was predicted directly from images of the donor. The results of droplet image prediction using LIFT gave an average RMSE of 9.63 compared with the experimental images, with the SSIM ranging from 0.75 to 0.83, reflecting reliable structural similarity across predictions. These findings underscore the model's predictive potential while identifying opportunities for refinement in minimising error. This approach has the potential to transform parameter optimisation for LIFT, as it enables the visualization of the deposited material without the time-consuming requirement of removing the donor from the setup to allow inspection of the receiver. This work therefore represents an important step forward in the development of LIFT as an additive manufacturing technology to create complex 3D structures on the microscale.

摘要

本文提出了一种通过应用深度学习技术来提高激光诱导正向转移(LIFT)的精度和效率的新方法。通过在供体和受体基板图像数据集上训练神经网络,直接从供体图像预测沉积在受体上的铜液滴的外观。与实验图像相比,使用LIFT进行液滴图像预测的结果平均均方根误差(RMSE)为9.63,结构相似性指数(SSIM)在0.75至0.83之间,这反映了预测结果具有可靠的结构相似性。这些发现突出了该模型的预测潜力,同时也确定了在最小化误差方面进行改进的机会。这种方法有可能改变LIFT的参数优化,因为它能够在不花费时间从装置中移除供体以检查受体的情况下可视化沉积材料。因此,这项工作代表了LIFT作为一种在微观尺度上创建复杂三维结构的增材制造技术发展中的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89dc/11929676/5d50f9a995c7/42452_2025_6679_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验