Baulin Vladimir A, Linklater Denver P, Juodkazis Saulius, Ivanova Elena P
Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona 43007, Spain.
Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
ACS Nano. 2025 Apr 8;19(13):12606-12625. doi: 10.1021/acsnano.4c15671. Epub 2025 Mar 25.
Inspired by the natural defense strategies of insect wings and plant leaves, nanostructured surfaces have emerged as a promising tool in various fields, including engineering, biomedical sciences, and materials science, to combat bacterial contamination and disrupt biofilm formation. However, the development of effective antimicrobial surfaces against fungal and viral pathogens presents distinct challenges, necessitating tailored approaches. Here, we aimed to review the recent advancements of the use of nanostructured surfaces to combat microbial contamination, particularly focusing on their mechano-bactericidal and antifungal properties, as well as their potential in mitigating viral transmission. We comparatively analyzed the diverse geometries and nanoarchitectures of these surfaces and discussed their application in various biomedical contexts, such as dental and orthopedic implants, drug delivery systems, and tissue engineering. Our review highlights the importance of preventing microbial attachment and biofilm formation, especially in the context of rising antimicrobial resistance and the economic impact of biofilms. We also discussed the latest progress in materials science, particularly nanostructured surface engineering, as a promising strategy for reducing viral transmission through surfaces. Overall, our findings underscore the significance of innovative strategies to mitigate microbial attachment and surface-mediated transmission, while also emphasizing the need for further interdisciplinary research in this area to optimize antimicrobial efficacy and address emerging challenges.
受昆虫翅膀和植物叶子的天然防御策略启发,纳米结构表面已成为工程、生物医学科学和材料科学等各个领域中对抗细菌污染和破坏生物膜形成的一种有前途的工具。然而,开发针对真菌和病毒病原体的有效抗菌表面面临着独特的挑战,需要采用量身定制的方法。在此,我们旨在综述利用纳米结构表面对抗微生物污染的最新进展,特别关注其机械杀菌和抗真菌特性,以及它们在减轻病毒传播方面的潜力。我们比较分析了这些表面的不同几何形状和纳米结构,并讨论了它们在各种生物医学环境中的应用,如牙科和骨科植入物、药物递送系统和组织工程。我们的综述强调了防止微生物附着和生物膜形成的重要性,特别是在抗菌耐药性不断上升以及生物膜的经济影响的背景下。我们还讨论了材料科学的最新进展,特别是纳米结构表面工程,作为一种减少病毒通过表面传播的有前途的策略。总体而言,我们的研究结果强调了创新策略在减轻微生物附着和表面介导传播方面的重要性,同时也强调了在该领域进行进一步跨学科研究以优化抗菌效果和应对新出现挑战的必要性。