Zhang Gu, Gornyi Igor, Gefen Yuval
Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies and Institut für Theorie der Kondensierten Materie, 76131 Karlsruhe, Germany.
Phys Rev Lett. 2025 Mar 7;134(9):096303. doi: 10.1103/PhysRevLett.134.096303.
The low-energy dynamics of two-dimensional topological matter hinges on its one-dimensional edge modes. Tunneling between fractional quantum Hall edge modes facilitates the study of anyonic statistics: it induces time-domain braiding that dominates signals from diluted anyon beams. We develop a framework for characterizing one-dimensional out-of-equilibrium anyonic states and define their effective potential and temperature, both arising from anyonic braiding, as well as the landscape of their excitations. Unlike fermions, the effective anyon potential depends on the type of the tunneling quasiparticles; nonequilibrium anyonic states are underlain by power-law energy distributions. This allows "hot" anyons to tunnel above the chemical potential of the source, which we capture by a measurable universal witness function. Our analysis raises the prospect of generalizing the kinetic approach to compressible anyonic matter in higher dimensions.
二维拓扑物质的低能动力学取决于其一维边缘模式。分数量子霍尔边缘模式之间的隧穿有助于研究任意子统计:它会引发时域编织,这种编织主导着来自稀释任意子束的信号。我们开发了一个用于表征一维非平衡任意子态的框架,并定义了它们的有效势和温度,这两者均源于任意子编织,以及它们的激发态势能面。与费米子不同,有效任意子势取决于隧穿准粒子的类型;非平衡任意子态由幂律能量分布构成。这使得“热”任意子能够隧穿到源的化学势之上,我们通过一个可测量的通用见证函数捕捉到这一现象。我们的分析提出了将动力学方法推广到更高维度可压缩任意子物质的前景。