Suppr超能文献

由类安德列夫隧穿导致的分数统计诱导纠缠。

Fractional-statistics-induced entanglement from Andreev-like tunneling.

作者信息

Zhang Gu, Glidic Pierre, Pierre Frédéric, Gornyi Igor, Gefen Yuval

机构信息

National Laboratory of Solid State Microstructures, School of Physics, Jiangsu Physical Science Research Center, Nanjing University, Nanjing, 210093, China.

Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

出版信息

Nat Commun. 2025 Jul 16;16(1):6558. doi: 10.1038/s41467-025-61869-w.

Abstract

The role of anyonic statistics stands as a cornerstone in the landscape of topological quantum techniques. While recent years have brought forth encouraging and persuasive strides in detecting anyons, a significant facet remains unexplored, especially in view of connecting anyonic physics to quantum information platforms-whether and how entanglement can be generated by anyonic braiding. Here, we demonstrate that even when two anyonic subsystems (represented by anyonic beams) are connected only by electron tunneling, entanglement between them, manifesting fractional statistics, is generated. To demonstrate this physics, we rely on a platform where fractional quantum Hall edges are bridged by a quantum point contact that allows only transmission of fermions (so-called Andreev-like tunneling). This invokes the physics of two-beam collisions in an anyonic Hong-Ou-Mandel collider, accompanied by a process that we dub anyon-quasihole braiding. We define an entanglement pointer-a current-noise-based function tailored to quantify entanglement associated with quasiparticle fractional statistics. Our work, which exposes, both in theory and in experiment, entanglement associated with anyonic statistics and braiding, prospectively paves the way to the exploration of entanglement induced by non-Abelian statistics.

摘要

任意子统计的作用是拓扑量子技术领域的基石。尽管近年来在探测任意子方面取得了令人鼓舞且有说服力的进展,但一个重要方面仍未得到探索,特别是考虑到将任意子物理与量子信息平台联系起来——是否以及如何通过任意子编织产生纠缠。在此,我们证明,即使两个任意子子系统(由任意子束表示)仅通过电子隧穿相连,它们之间也会产生体现分数统计的纠缠。为了展示这种物理现象,我们依赖于一个平台,其中分数量子霍尔边缘由仅允许费米子传输的量子点接触桥接(所谓的类安德列夫隧穿)。这引发了任意子洪 - 欧 - 曼德尔对撞机中两束碰撞的物理现象,同时伴随着一个我们称为任意子 - 准空穴编织的过程。我们定义了一个纠缠指针——一个基于电流噪声的函数,专门用于量化与准粒子分数统计相关的纠缠。我们的工作在理论和实验上都揭示了与任意子统计和编织相关的纠缠,有望为探索非阿贝尔统计诱导的纠缠铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验