Suppr超能文献

利用眼电图和机器学习检测心脏骤停患者的眼球运动

Eye movement detection using electrooculography and machine learning in cardiac arrest patients.

作者信息

Hill Cameron J, Sykora Chelsea A, Schmugge Stephen, Tate Samuel, Cronin Michael F M, Sisto Joseph, Mallinger Leigh Ann, Reinert Allyson, Stafford Rebecca A, Tao Brian S, Sakthiyendran Naveen Arunachalam, Nguyen Kerry, Krishnaswamy Ashwin, Patil Shruti, Al-Faraj Abrar, Noviawaty Ika, Russo Mary, Pugsley Brian, Lee Jong Woo, Greer David, Shin Min, Ong Charlene J

机构信息

Boston Medical Center, United States; Boston University Chobanian and Avedisian School of Medicine, United States.

University of North Carolina, Charlotte, United States.

出版信息

Resuscitation. 2025 May;210:110577. doi: 10.1016/j.resuscitation.2025.110577. Epub 2025 Mar 24.

Abstract

AIM

To train a machine learning algorithm to identify eye movement from electrooculography (EOG) in cardiac arrest (CA) patients. Neuroprognostication of comatose post-CA patients is challenging, requiring novel biomarkers to guide decision making. Eye movement may be a promising marker of arousal recovery, as pathways for eye movement and arousal share common anatomic structures. Continuous quantification of eye movement is feasible through electroencephalogram (EEG) with EOG, but manual quantification is resource-intensive.

METHODS

We conducted a retrospective, single-center cohort study of post-CA patients who underwent standard-of-care EEG/EOG monitoring in the intensive care unit from 2020 to 2023. We trained a machine learning algorithm to detect eye movement on one-hour of EOG data from 145,800 one-second samples from 48 patients. Performance was assessed on a reserved test set of 12-hours of EOG data from 705,600 one-second samples from 24 patients using area under the curve (AUC), sensitivity, and specificity.

RESULTS

Of 72 eligible patients, average age was 56.9 years, and 46 (63.9%) were female. In the training group of 48 patients, 35 (72.9%) survived and 32 (66.7%) followed commands. In the test group, 16 (66.7%) survived and 7 (29.2%) followed commands. Our final algorithm identified eye movement with sensitivity of 94.0%, specificity of 82.0%, and an AUC of 94.2%.

CONCLUSION

Automated eye movement detection from EOG is highly sensitive in CA patients. Potential applications include using eye movement quantification to evaluate associations with recovery.

摘要

目的

训练一种机器学习算法,以从心脏骤停(CA)患者的眼电图(EOG)中识别眼球运动。CA后昏迷患者的神经预后评估具有挑战性,需要新的生物标志物来指导决策。眼球运动可能是觉醒恢复的一个有前景的标志物,因为眼球运动和觉醒的通路共享共同的解剖结构。通过脑电图(EEG)结合EOG对眼球运动进行连续量化是可行的,但手动量化资源消耗大。

方法

我们对2020年至2023年在重症监护病房接受标准护理EEG/EOG监测的CA后患者进行了一项回顾性单中心队列研究。我们训练了一种机器学习算法,以从48名患者的145800个一秒样本的一小时EOG数据中检测眼球运动。使用曲线下面积(AUC)、敏感性和特异性,在来自24名患者的705600个一秒样本的12小时EOG数据的保留测试集上评估性能。

结果

72名符合条件的患者中,平均年龄为56.9岁,46名(63.9%)为女性。在48名患者的训练组中,35名(72.9%)存活,32名(66.7%)对指令有反应。在测试组中,16名(66.7%)存活,7名(29.2%)对指令有反应。我们的最终算法识别眼球运动的敏感性为94.0%,特异性为82.0%,AUC为94.2%。

结论

从EOG自动检测眼球运动在CA患者中具有高度敏感性。潜在应用包括使用眼球运动量化来评估与恢复的关联。

相似文献

7
Automatic removal of eye-movement and blink artifacts from EEG signals.自动去除 EEG 信号中的眼动和眨眼伪迹。
Brain Topogr. 2010 Mar;23(1):105-14. doi: 10.1007/s10548-009-0131-4. Epub 2009 Dec 29.

本文引用的文献

1
Covert Tracking to Visual Stimuli in Comatose Patients With Traumatic Brain Injury.颅脑损伤昏迷患者的视觉刺激隐匿追踪。
Neurology. 2023 Sep 12;101(11):489-494. doi: 10.1212/WNL.0000000000207302. Epub 2023 Apr 19.
5
Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest.院外心脏骤停后低温与常温。
N Engl J Med. 2021 Jun 17;384(24):2283-2294. doi: 10.1056/NEJMoa2100591.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验