Department of Chemistry, Yale University, New Haven, Connecticut06520, United States.
Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington99352, United States.
J Am Chem Soc. 2022 Sep 14;144(36):16524-16534. doi: 10.1021/jacs.2c05779. Epub 2022 Aug 24.
The systematic improvement of Fe-N-C materials for fuel cell applications has proven challenging, due in part to an incomplete atomistic understanding of the oxygen reduction reaction (ORR) under electrochemical conditions. Herein, a multilevel computational approach, which combines ab initio molecular dynamics simulations and constant potential density functional theory calculations, is used to assess proton-coupled electron transfer (PCET) processes and adsorption thermodynamics of key ORR intermediates. These calculations indicate that the potential-limiting step for ORR on Fe-N-C materials is the formation of the Fe-OOH intermediate. They also show that an active site model with a water molecule axially ligated to the iron center throughout the catalytic cycle produces results that are consistent with the experimental measurements. In particular, reliable prediction of the ORR onset potential and the Fe(III/II) redox potential associated with the conversion of Fe-OH to Fe and desorbed HO requires an axial HO co-adsorbed to the iron center. The observation of a five-coordinate rather than four-coordinate active site has significant implications for the thermodynamics and mechanism of ORR. These findings highlight the importance of solvent-substrate interactions and surface charge effects for understanding the PCET reaction mechanisms and transition-metal redox couples under realistic electrochemical conditions.
系统地改善燃料电池应用中的 Fe-N-C 材料一直具有挑战性,部分原因是对电化学条件下氧还原反应 (ORR) 的原子级理解不完整。在此,采用了一种多级计算方法,结合了从头算分子动力学模拟和恒电位密度泛函理论计算,以评估关键 ORR 中间体的质子耦合电子转移 (PCET) 过程和吸附热力学。这些计算表明,Fe-N-C 材料上 ORR 的限速步骤是 Fe-OOH 中间体的形成。它们还表明,在整个催化循环中,具有轴向配位到铁中心的水分子的活性位点模型产生的结果与实验测量结果一致。特别是,可靠地预测 ORR 起始电位和与 Fe-OH 转化为 Fe 和脱附 HO 相关的 Fe(III/II)氧化还原电位需要轴向 HO 与铁中心共吸附。观察到五配位而不是四配位的活性位点对 ORR 的热力学和机制具有重要意义。这些发现强调了溶剂-底物相互作用和表面电荷效应对理解实际电化学条件下的 PCET 反应机制和过渡金属氧化还原对的重要性。