Suppr超能文献

生物信息学方法研究牙周炎在动脉粥样硬化进展中的免疫炎症机制

Bioinformatics Approach to Investigating the Immuno-Inflammatory Mechanisms of Periodontitis in the Progression of Atherosclerosis.

作者信息

Yang Wenling, Xie Jianhua, Zhao Xing, Li Xuelian, Liu Qingyi, Sun Jinpeng, Zhang Ruiyu, Wei Yumiao, Wang Boyuan

机构信息

Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

出版信息

Curr Issues Mol Biol. 2025 Mar 17;47(3):197. doi: 10.3390/cimb47030197.

Abstract

Unstable atherosclerotic plaques are a major cause of acute cardiovascular events and ischemic stroke. Clinical studies have suggested a link between periodontitis and atherosclerotic plaque progression, but the underlying mechanisms remain unclear. To investigate this, transcriptomic datasets related to periodontitis and atherosclerosis were downloaded from Gene Expression Omnibus. A weighted gene co-expression network analysis was used to identify gene modules associated with periodontitis, and the Limma R package identified differentially expressed genes (DEGs) between unstable and stable plaques. Overlapping genes were defined as periodontitis-related DEGs, followed by functional enrichment analysis and protein-protein interaction network construction. Machine learning methods were used to identify biomarkers for unstable plaques related to periodontitis, which were validated using external datasets. Immune infiltration and single-cell analyses were performed to explore the relationship between biomarkers and immune cells. A total of 161 periodontitis-related DEGs were identified, with the pathway analysis showing associations with immune regulation and collagen matrix degradation. , , and were identified as biomarkers for unstable plaques, demonstrating a high diagnostic value (AUC: 0.9884, 95% CI: 0.9641-1). Immune infiltration analysis revealed an increase in macrophages within unstable plaques. Single-cell analysis showed expression in macrophages and dendritic cells, while and were expressed in macrophages, dendritic cells, NK cells, and T cells. Consensus clustering identified three expression patterns within unstable plaques. Our findings were validated in atherosclerotic mouse models with periodontitis. This study provides insights into how periodontitis contributes to plaque instability, supporting diagnosis and intervention in patients with periodontitis.

摘要

不稳定的动脉粥样硬化斑块是急性心血管事件和缺血性中风的主要原因。临床研究表明牙周炎与动脉粥样硬化斑块进展之间存在联系,但其潜在机制仍不清楚。为了对此进行研究,从基因表达综合数据库下载了与牙周炎和动脉粥样硬化相关的转录组数据集。使用加权基因共表达网络分析来识别与牙周炎相关的基因模块,并用Limma R软件包识别不稳定斑块和稳定斑块之间的差异表达基因(DEG)。重叠基因被定义为与牙周炎相关的DEG,随后进行功能富集分析和蛋白质-蛋白质相互作用网络构建。使用机器学习方法识别与牙周炎相关的不稳定斑块的生物标志物,并使用外部数据集对其进行验证。进行免疫浸润和单细胞分析以探索生物标志物与免疫细胞之间的关系。共鉴定出161个与牙周炎相关的DEG,通路分析显示它们与免疫调节和胶原基质降解有关。 、 和 被鉴定为不稳定斑块的生物标志物,显示出较高的诊断价值(AUC:0.9884,95% CI:0.9641-1)。免疫浸润分析显示不稳定斑块内巨噬细胞增加。单细胞分析显示 在巨噬细胞和树突状细胞中表达,而 和 在巨噬细胞、树突状细胞、自然杀伤细胞和T细胞中表达。共识聚类在不稳定斑块内确定了三种表达模式。我们的研究结果在患有牙周炎的动脉粥样硬化小鼠模型中得到了验证。本研究为牙周炎如何导致斑块不稳定提供了见解,支持对牙周炎患者的诊断和干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a65/11941604/72ad200c345c/cimb-47-00197-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验