Suppr超能文献

形状可编程磁性软材料的数据驱动设计

Data-driven design of shape-programmable magnetic soft materials.

作者信息

Karacakol Alp C, Alapan Yunus, Demir Sinan O, Sitti Metin

机构信息

Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Nat Commun. 2025 Mar 26;16(1):2946. doi: 10.1038/s41467-025-58091-z.

Abstract

Magnetically responsive soft materials with spatially-encoded magnetic and material properties enable versatile shape morphing for applications ranging from soft medical robots to biointerfaces. Although high-resolution encoding of 3D magnetic and material properties create a vast design space, their intrinsic coupling makes trial-and-error based design exploration infeasible. Here, we introduce a data-driven strategy that uses stochastic design alterations guided by a predictive neural network, combined with cost-efficient simulations, to optimize distributed magnetization profile and morphology of magnetic soft materials for desired shape-morphing and robotic behaviors. Our approach uncovers non-intuitive 2D designs that morph into complex 2D/3D structures and optimizes morphological behaviors, such as maximizing rotation or minimizing volume. We further demonstrate enhanced jumping performance over an intuitive reference design and showcase fabrication- and scale-agnostic, inherently 3D, multi-material soft structures for robotic tasks including traversing and jumping. This generic, data-driven framework enables efficient exploration of design space of stimuli-responsive soft materials, providing functional shape morphing and behavior for the next generation of soft robots and devices.

摘要

具有空间编码磁性和材料特性的磁响应软材料能够实现多种形状变形,可应用于从软医疗机器人到生物接口等领域。尽管对三维磁性和材料特性进行高分辨率编码创造了广阔的设计空间,但它们的内在耦合使得基于试错的设计探索变得不可行。在此,我们引入一种数据驱动策略,该策略利用由预测神经网络引导的随机设计变更,并结合成本效益高的模拟,来优化磁性软材料的分布式磁化分布和形态,以实现所需的形状变形和机器人行为。我们的方法揭示了能变形为复杂二维/三维结构的非直观二维设计,并优化了形态行为,比如使旋转最大化或使体积最小化。我们进一步展示了相较于直观参考设计增强的跳跃性能,并展示了用于包括穿越和跳跃在内的机器人任务的、与制造和规模无关的、固有的三维多材料软结构。这种通用的数据驱动框架能够高效探索刺激响应软材料的设计空间,为下一代软机器人和设备提供功能性形状变形和行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d255/11947188/27d578956ce7/41467_2025_58091_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验