Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Sci Robot. 2021 Apr 28;6(53). doi: 10.1126/scirobotics.abf0112.
Small-scale soft-bodied machines that respond to externally applied magnetic field have attracted wide research interest because of their unique capabilities and promising potential in a variety of fields, especially for biomedical applications. When the size of such machines approach the sub-millimeter scale, their designs and functionalities are severely constrained by the available fabrication methods, which only work with limited materials, geometries, and magnetization profiles. To free such constraints, here, we propose a bottom-up assembly-based 3D microfabrication approach to create complex 3D miniature wireless magnetic soft machines at the milli- and sub-millimeter scale with arbitrary multimaterial compositions, arbitrary 3D geometries, and arbitrary programmable 3D magnetization profiles at high spatial resolution. This approach helps us concurrently realize diverse characteristics on the machines, including programmable shape morphing, negative Poisson's ratio, complex stiffness distribution, directional joint bending, and remagnetization for shape reconfiguration. It enlarges the design space and enables biomedical device-related functionalities that are previously difficult to achieve, including peristaltic pumping of biological fluids and transport of solid objects, active targeted cargo transport and delivery, liquid biopsy, and reversible surface anchoring in tortuous tubular environments withstanding fluid flows, all at the sub-millimeter scale. This work improves the achievable complexity of 3D magnetic soft machines and boosts their future capabilities for applications in robotics and biomedical engineering.
由于在各个领域(特别是生物医学应用领域)具有独特的功能和广阔的应用前景,对外界磁场做出响应的小型软体机器人吸引了广泛的研究兴趣。当这些机器人的尺寸接近亚毫米级时,其设计和功能受到可用制造方法的严重限制,这些方法仅适用于有限的材料、几何形状和磁化轮廓。为了摆脱这些限制,我们提出了一种基于自下而上组装的三维微制造方法,以在毫微微米级和亚毫米级的范围内创建复杂的三维微型无线磁软机器人,这些机器人具有任意多材料组成、任意三维几何形状和任意可编程三维磁化轮廓,具有高空间分辨率。这种方法有助于我们同时在机器人上实现各种特性,包括可编程形状变形、负泊松比、复杂的刚度分布、定向关节弯曲以及重新磁化以实现形状重构。它扩大了设计空间,并实现了以前难以实现的与生物医学设备相关的功能,包括生物流体的蠕动泵送和固体物体的输送、主动靶向货物运输和输送、液体活检以及在承受流体流动的蜿蜒管状环境中进行可逆表面锚固,所有这些都在亚毫米级范围内。这项工作提高了 3D 磁软机器人的可实现复杂性,并增强了它们在机器人技术和生物医学工程领域的未来应用能力。