Christopoulos Stavros-Richard G, Kuganathan Navaratnarajah, Sgourou Efstratia, Londos Charalampos, Chroneos Alexander
Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Huddersfield, HD4 6DJ, UK.
Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry, CV1 2TU, UK.
Sci Rep. 2025 Mar 26;15(1):10416. doi: 10.1038/s41598-025-94959-2.
Defect processes and energetics in semiconducting alloys is scientifically and technologically important as silicon germanium (SiGe) is a mainstream nanoelectronic material. It is established that point defects and defect clusters have an increasing role in the physical properties of SiGe particularly with the ever-decreasing critical dimensions of nanoelectronic devices. Nitrogen-vacancy defects in SiGe are bound and have the potential to change the optical and electronic properties and thus need to be investigated as absolute control is required in nanoelectronic devices. The nitrogen-vacancy defects are not extensively studied in SiGe random semiconductor alloys. Here we employ density functional theory (DFT) in conjunction with the special quasirandom structures (SQS) method to calculate the binding energies of substitutional nitrogen-vacancy pairs (NV) in SiGe alloys. This is a non-trivial problem as the energetics of these defect pairs are dependent upon the nearest neighbour Ge concentration and the composition of SiGe. The criterion for NV stability is binding energy and here it is shown that the most bound NV defects will form in high Si-content SiGe alloys.
由于硅锗(SiGe)是一种主流的纳米电子材料,半导体合金中的缺陷过程和能量学在科学和技术上都很重要。已经确定,点缺陷和缺陷团簇在SiGe的物理性质中发挥着越来越重要的作用,特别是随着纳米电子器件的临界尺寸不断减小。SiGe中的氮空位缺陷是束缚态的,有可能改变光学和电子性质,因此需要进行研究,因为纳米电子器件需要绝对的控制。在SiGe随机半导体合金中,氮空位缺陷尚未得到广泛研究。在这里,我们采用密度泛函理论(DFT)结合特殊准随机结构(SQS)方法来计算SiGe合金中替代氮空位对(NV)的结合能。这是一个不平凡的问题,因为这些缺陷对的能量学取决于最近邻Ge浓度和SiGe的组成。NV稳定性的判据是结合能,这里表明,最束缚的NV缺陷将在高Si含量的SiGe合金中形成。