Suppr超能文献

在地质聚合物混凝土生产中使用基于偏高岭土-粒化高炉矿渣的前驱体作为传统混凝土的可持续替代品。

Utilization of a PFA-GGBS-Based Precursor in Geopolymer Concrete Production as a Sustainable Substitute for Conventional Concrete.

作者信息

Oti Jonathan, Adeleke Blessing O, Casabuena Lito R, Kinuthia John M, Sule Samuel

机构信息

Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK.

Faculty of Engineering, Department of Civil & Environmental Engineering, University of Portharcourt, Rivers State PMB 500272, Nigeria.

出版信息

Materials (Basel). 2025 Mar 16;18(6):1309. doi: 10.3390/ma18061309.

Abstract

Awareness of environmental sustainability is driving the shift from conventional Portland cement, a major contributor to carbon dioxide emissions, to more sustainable alternatives. This study focuses on developing a geopolymer concrete by optimizing geopolymer concrete mixtures with various ratios of Ground Granulated Blast Furnace Slag (GGBS) and pulverized fly ash (PFA) as precursors, aiming to find a mix that maximizes strength while minimizing environmental impacts. The precursor was activated using a laboratory-synthesized silica fume (SF)-derived sodium silicate solution in combination with NaOH at a molarity of 10M. This study aims to find the optimal geopolymer concrete mix with a 0.55 water-to-binder ratio, a 0.40 alkali-to-precursor ratio, and a 1:1 sodium silicate to sodium hydroxide ratio. Ordinary Portland cement was used as the control mix binder (C), while the geopolymer mixes included varying GGBS-PFA compositions [CL0 (50% GGBS-50% PFA), CL1 (60% GGBS-40% PFA), CL2 (70% GGBS-30% PFA), CL3 (80% GGBS-20% PFA), and CL4 (90% GGBS-10% PFA)]. The engineering performance of the mixtures was assessed using slump, unconfined compressive strength, split tensile, and flexural strength tests in accordance with their relevant standards. Observations showed that GPC specimens exhibited similar or slightly higher strength values than conventional concrete using PC. In addition to strength, geopolymers have a smaller environmental footprint, consuming less energy and reducing greenhouse gas emissions. These qualities make geopolymer concrete a sustainable construction option that aligns with global efforts to reduce carbon emissions and conserve resources.

摘要

对环境可持续性的认识正在推动从传统波特兰水泥(二氧化碳排放的主要来源)向更可持续替代品的转变。本研究着重于通过优化以不同比例的粒化高炉矿渣(GGBS)和粉煤灰(PFA)作为前驱体的地质聚合物混凝土混合物来开发地质聚合物混凝土,旨在找到一种能使强度最大化同时将环境影响最小化的混合物。前驱体使用实验室合成的硅灰(SF)衍生的硅酸钠溶液与摩尔浓度为10M的氢氧化钠进行活化。本研究旨在找到水胶比为0.55、碱与前驱体比为0.40以及硅酸钠与氢氧化钠比为1:1的最佳地质聚合物混凝土混合物。普通波特兰水泥用作对照混合物粘结剂(C),而地质聚合物混合物包括不同的GGBS - PFA组成[CL0(50% GGBS - 50% PFA)、CL1(60% GGBS - 40% PFA)、CL2(70% GGBS - 30% PFA)、CL3(80% GGBS - 20% PFA)和CL4(90% GGBS - 10% PFA)]。根据相关标准,通过坍落度、无侧限抗压强度、劈裂抗拉和抗弯强度试验对混合物的工程性能进行评估。观察结果表明,地质聚合物混凝土试件的强度值与使用波特兰水泥的传统混凝土相似或略高。除了强度之外,地质聚合物的环境足迹更小,消耗的能源更少且减少了温室气体排放。这些特性使地质聚合物混凝土成为一种可持续的建筑选择,符合全球减少碳排放和节约资源的努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b495/11943638/071894a3e30e/materials-18-01309-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验