Suppr超能文献

利用人工智能进行神经急症的诊断与治疗:近期进展及未来方向的全面综述

Harnessing artificial intelligence for the diagnosis and treatment of neurological emergencies: a comprehensive review of recent advances and future directions.

作者信息

AbuAlrob Majd A, Mesraoua Boulenouar

机构信息

Department of Neurosciences, Hamad Medical Corporation, Doha, Qatar.

Weill Cornell Medical College, Doha, Qatar.

出版信息

Front Neurol. 2024 Oct 11;15:1485799. doi: 10.3389/fneur.2024.1485799. eCollection 2024.

Abstract

Artificial intelligence (AI) is rapidly transforming the landscape of neurology, offering innovative solutions for diagnosing and managing emergent neurological conditions such as stroke, traumatic brain injury, and acute spinal cord injury. This review critically examines the recent advancements in AI applications within the field of neurology, emphasizing both the potential and limitations of these technologies. While AI demonstrates remarkable accuracy and speed in diagnostic imaging, outcome prediction, and personalized treatment plans, its integration into clinical practice remains challenged by ethical concerns, infrastructural limitations, and the "black box" nature of many AI algorithms. The review highlights the current gaps in literature, particularly the limited research on AI's use in low-resource settings and its generalizability across diverse populations. Moreover, the review underscores the need for more longitudinal studies to assess the long-term efficacy of AI-driven interventions and calls for greater transparency in AI systems to enhance trust among clinicians. Future directions for AI in neurology emphasize the importance of interdisciplinary collaboration, regulatory oversight, and the development of equitable AI models that can benefit all patient populations. This review provides a balanced and comprehensive overview of AI's role in neurology, offering insights into both the opportunities and challenges that lie ahead.

摘要

人工智能(AI)正在迅速改变神经病学的格局,为诊断和管理诸如中风、创伤性脑损伤和急性脊髓损伤等紧急神经系统疾病提供创新解决方案。本综述批判性地审视了神经病学领域内人工智能应用的最新进展,强调了这些技术的潜力和局限性。虽然人工智能在诊断成像、结果预测和个性化治疗方案方面表现出了卓越的准确性和速度,但其融入临床实践仍面临伦理问题、基础设施限制以及许多人工智能算法的“黑箱”性质等挑战。该综述突出了当前文献中的空白,特别是关于人工智能在资源匮乏环境中的应用以及其在不同人群中的通用性的研究有限。此外,该综述强调需要更多的纵向研究来评估人工智能驱动干预措施的长期疗效,并呼吁提高人工智能系统的透明度,以增强临床医生之间的信任。神经病学中人工智能的未来方向强调跨学科合作、监管监督以及开发能使所有患者群体受益的公平人工智能模型的重要性。本综述对人工智能在神经病学中的作用进行了平衡而全面的概述,对未来的机遇和挑战提供了见解。

相似文献

4
Revolutionizing Radiology With Artificial Intelligence.用人工智能革新放射学。
Cureus. 2024 Oct 29;16(10):e72646. doi: 10.7759/cureus.72646. eCollection 2024 Oct.

本文引用的文献

2
Reply: Hypertrophic Cardiomyopathy as Congenital Heart Disease.回复:肥厚型心肌病作为先天性心脏病
J Am Coll Cardiol. 2021 Mar 16;77(10):1378-1379. doi: 10.1016/j.jacc.2020.12.045.
7
Causability and explainability of artificial intelligence in medicine.人工智能在医学中的可归因性与可解释性。
Wiley Interdiscip Rev Data Min Knowl Discov. 2019 Jul-Aug;9(4):e1312. doi: 10.1002/widm.1312. Epub 2019 Apr 2.
8
Machine Learning Approach to Identify Stroke Within 4.5 Hours.机器学习方法可在 4.5 小时内识别中风。
Stroke. 2020 Mar;51(3):860-866. doi: 10.1161/STROKEAHA.119.027611. Epub 2020 Jan 28.
10
International evaluation of an AI system for breast cancer screening.国际乳腺癌筛查人工智能系统评估。
Nature. 2020 Jan;577(7788):89-94. doi: 10.1038/s41586-019-1799-6. Epub 2020 Jan 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验