Suppr超能文献

利用机器学习算法改善创伤性脑损伤的预后预测。

Refining outcome prediction after traumatic brain injury with machine learning algorithms.

机构信息

Department of Medical Sciences Neurosurgery, Uppsala University, Uppsala, Sweden.

Division of Clinical Epidemiology, Department of Medicine Solna, Stockholm, Sweden.

出版信息

Sci Rep. 2024 Apr 5;14(1):8036. doi: 10.1038/s41598-024-58527-4.

Abstract

Outcome after traumatic brain injury (TBI) is typically assessed using the Glasgow outcome scale extended (GOSE) with levels from 1 (death) to 8 (upper good recovery). Outcome prediction has classically been dichotomized into either dead/alive or favorable/unfavorable outcome. Binary outcome prediction models limit the possibility of detecting subtle yet significant improvements. We set out to explore different machine learning methods with the purpose of mapping their predictions to the full 8 grade scale GOSE following TBI. The models were set up using the variables: age, GCS-motor score, pupillary reaction, and Marshall CT score. For model setup and internal validation, a total of 866 patients could be included. For external validation, a cohort of 369 patients were included from Leuven, Belgium, and a cohort of 573 patients from the US multi-center ProTECT III study. Our findings indicate that proportional odds logistic regression (POLR), random forest regression, and a neural network model achieved accuracy values of 0.3-0.35 when applied to internal data, compared to the random baseline which is 0.125 for eight categories. The models demonstrated satisfactory performance during external validation in the data from Leuven, however, their performance were not satisfactory when applied to the ProTECT III dataset.

摘要

创伤性脑损伤(TBI)后的结果通常使用格拉斯哥结局量表扩展版(GOSE)进行评估,其水平从 1(死亡)到 8(上佳恢复)。结果预测经典地分为死亡/存活或预后良好/不良。二分类结果预测模型限制了检测细微但显著改善的可能性。我们着手探索不同的机器学习方法,目的是将它们的预测映射到 TBI 后的完整 8 级 GOSE 量表。该模型使用以下变量进行设置:年龄、GCS-运动评分、瞳孔反应和马歇尔 CT 评分。对于模型设置和内部验证,可以纳入 866 名患者。对于外部验证,从比利时鲁汶纳入了 369 名患者的队列,以及来自美国多中心 PROTECT III 研究的 573 名患者的队列。我们的研究结果表明,当应用于内部数据时,比例优势逻辑回归(POLR)、随机森林回归和神经网络模型的准确率值在 0.3-0.35 之间,而随机基线为 0.125(8 个类别)。在鲁汶数据的外部验证中,这些模型表现出令人满意的性能,但在应用于 PROTECT III 数据集时,它们的性能并不令人满意。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/10997790/60a7d4bf918c/41598_2024_58527_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验