Suppr超能文献

基于静息态脑电图和结构磁共振成像的阿尔茨海默病多模态诊断

Multimodal diagnosis of Alzheimer's disease based on resting-state electroencephalography and structural magnetic resonance imaging.

作者信息

Liu Junxiu, Wu Shangxiao, Fu Qiang, Luo Xiwen, Luo Yuling, Qin Sheng, Huang Yiting, Chen Zhaohui

机构信息

Guangxi Key Laboratory of Brain-inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin, China.

Key Laboratory of Nonlinear Circuits and Optical Communications, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Normal University, Guilin, Guangxi, China.

出版信息

Front Physiol. 2025 Mar 12;16:1515881. doi: 10.3389/fphys.2025.1515881. eCollection 2025.

Abstract

Multimodal diagnostic methods for Alzheimer's disease (AD) have demonstrated remarkable performance. However, the inclusion of electroencephalography (EEG) in such multimodal studies has been relatively limited. Moreover, most multimodal studies on AD use convolutional neural networks (CNNs) to extract features from different modalities and perform fusion classification. Regrettably, this approach often lacks collaboration and fails to effectively enhance the representation ability of features. To address this issue and explore the collaborative relationship among multimodal EEG, this paper proposes a multimodal AD diagnosis model based on resting-state EEG and structural magnetic resonance imaging (sMRI). Specifically, this work designs corresponding feature extraction models for EEG and sMRI modalities to enhance the capability of extracting modality-specific features. Additionally, a multimodal joint attention mechanism (MJA) is developed to address the issue of independent modalities. The MJA promotes cooperation and collaboration between the two modalities, thereby enhancing the representation ability of multimodal fusion. Furthermore, a random forest classifier is introduced to enhance the classification ability. The diagnostic accuracy of the proposed model can achieve 94.7%, marking a noteworthy accomplishment. This research stands as the inaugural exploration into the amalgamation of deep learning and EEG multimodality for AD diagnosis. Concurrently, this work strives to bolster the use of EEG in multimodal AD research, thereby positioning itself as a hopeful prospect for future advancements in AD diagnosis.

摘要

用于阿尔茨海默病(AD)的多模态诊断方法已展现出卓越的性能。然而,脑电图(EEG)在这类多模态研究中的应用相对有限。此外,大多数关于AD的多模态研究使用卷积神经网络(CNN)从不同模态中提取特征并进行融合分类。遗憾的是,这种方法往往缺乏协作,无法有效增强特征的表征能力。为解决这一问题并探索多模态EEG之间的协作关系,本文提出了一种基于静息态EEG和结构磁共振成像(sMRI)的多模态AD诊断模型。具体而言,这项工作为EEG和sMRI模态设计了相应的特征提取模型,以增强提取模态特定特征的能力。此外,还开发了一种多模态联合注意力机制(MJA)来解决模态独立的问题。MJA促进了两种模态之间的合作与协作,从而增强了多模态融合的表征能力。此外,引入了随机森林分类器以提高分类能力。所提模型的诊断准确率可达94.7%,这是一项值得注意的成就。本研究是深度学习与EEG多模态用于AD诊断融合的首次探索。同时,这项工作致力于加强EEG在多模态AD研究中的应用,从而成为AD诊断未来进展的一个充满希望的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b26b/11937600/f7ecba3f6281/fphys-16-1515881-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验