Suppr超能文献

定制口腔防护器中用于颌面创伤保护的增强材料定位:体外与计算机模拟相结合的分析

Reinforcement Positioning in Custom-Made Mouthguards for Maxillofacial Trauma Protection: A Combined In Vitro and In Silico Analyses.

作者信息

de Queiroz Talita Suelen, Tribst João Paulo Mendes, Haddad E Borro Larissa, da Rocha Scalzer Lopes Guilherme, Borges Alexandre Luiz Souto, de Arruda Paes Junior Tarcisio Jose

机构信息

Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São José Dos Campos, São Paulo, Brazil.

Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.

出版信息

Dent Traumatol. 2025 Oct;41(5):581-594. doi: 10.1111/edt.13060. Epub 2025 Mar 27.

Abstract

BACKGROUND/AIM: This study evaluated the dentoalveolar responses of central incisors to anterior maxillary trauma in vitro and in silico using mouthguards (MGs) reinforced with polyamide mesh at three distinct positions.

MATERIAL AND METHODS

Forty 4-mm thick MGs were categorized based on mesh location: Group MG1 + 3 (reinforcement 1 mm from the vestibular limit), Group MG2 + 2 (2 mm), Group MG3 + 1 (3 mm), and a control group without reinforcement. A 3D-printed skull model (Spin Red Resin, Quanton 3D) simulated the dentoalveolar complex, with Resilab Clear resin (Wilcos) for teeth and addition-cured silicone for the periodontal ligament. This setup was connected to a custom impact device to ensure forces remained within the materials' elastic limits. Microstrains were measured using four strain gauges placed on the vestibular surfaces of the central incisors and the alveolar process of the maxilla. The impact was applied at Ep = 0.5496 J, parallel to the ground, using a 35-mm diameter steel sphere. For the in silico test, the setup was modeled in CAD software (Rhinoceros 7.0) and analyzed in CAE software (Ansys 2021 R1) through explicit dynamic simulation. All materials were assumed homogeneous, isotropic and linearly elastic. A 1 m/s impact was simulated using a 7.8 g/cm steel sphere. Physical contact conditions were defined as frictional and glued, with tetrahedral mesh elements applied after a 10% convergence test to ensure accuracy.

RESULTS

The maximum principal strains and stresses in teeth and maxilla were presented through colorimetric graphs. Statistical analysis (Shapiro-Wilk, Kruskal-Wallis, and Dunn's tests, 5% significance) revealed significant differences for the non-reinforced group (p = 6.8 × 10) but none between impact zones (p = 0.879), confirming uniform stress distribution.

CONCLUSIONS

Reinforcement systems significantly improved impact absorption in oral tissues, enhancing protection. However, the reinforcement location did not significantly affect absorption. Finite element analysis validated the in vitro results supporting both theoretical and practical models for further study and future improvements.

摘要

背景/目的:本研究在体外和计算机模拟中评估了中央前牙对上颌前部创伤的牙槽骨反应,使用了在三个不同位置用聚酰胺网增强的护齿器(MGs)。

材料与方法

40个4毫米厚的护齿器根据网的位置分类:MG1 + 3组(距前庭边缘1毫米处增强)、MG2 + 2组(2毫米)、MG3 + 1组(3毫米),以及一个无增强的对照组。一个3D打印的颅骨模型(Spin Red Resin,Quanton 3D)模拟牙槽骨复合体,牙齿用Resilab Clear树脂(Wilcos),牙周膜用加成型固化硅橡胶。该装置连接到一个定制的冲击装置,以确保力保持在材料的弹性极限内。使用四个应变片测量中央前牙前庭表面和上颌牙槽突上的微应变。使用直径35毫米的钢球,以Ep = 0.5496 J平行于地面施加冲击。对于计算机模拟测试,该装置在CAD软件(Rhinoceros 7.0)中建模,并在CAE软件(Ansys 2021 R1)中通过显式动态模拟进行分析。所有材料均假定为均匀、各向同性和线性弹性。使用7.8 g/cm的钢球模拟1 m/s的冲击。物理接触条件定义为摩擦和胶合,在进行10%收敛测试后应用四面体网格单元以确保准确性。

结果

通过比色图展示了牙齿和上颌骨中的最大主应变和应力。统计分析(Shapiro-Wilk、Kruskal-Wallis和Dunn检验,显著性水平5%)显示非增强组有显著差异(p = 6.8 × 10),但冲击区域之间无显著差异(p = 0.879),证实了应力分布均匀。

结论

增强系统显著改善了口腔组织的冲击吸收,增强了保护作用。然而,增强位置对吸收没有显著影响。有限元分析验证了体外结果,为进一步研究和未来改进提供了理论和实际模型支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd66/12424119/a35620500b64/EDT-41-581-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验