Jia Danchen, Cheng Ran, McNeely James H, Zong Haonan, Teng Xinyan, Xu Xinxin, Cheng Ji-Xin
Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
Department of Chemistry, Boston University, Boston, MA 02215, USA.
Sci Adv. 2024 Dec 20;10(51):eadn8255. doi: 10.1126/sciadv.adn8255.
Most molecules and dielectric materials have characteristic bond vibrations or phonon modes in the mid-infrared regime. However, infrared absorption spectroscopy lacks the sensitivity for detecting trace analytes due to the low quantum efficiency of infrared sensors. Here, we report mid-infrared photothermal plasmonic scattering (MIP-PS) spectroscopy to push the infrared detection limit toward nearly a hundred molecules in a plasmonic nanocavity. The plasmon scattering from a nanoparticle-on-film cavity has extremely high sensitivity to the spacing defined by the analyte molecules inside the nanogap. Meanwhile, a 1000-fold infrared light intensity enhancement at the bond vibration frequency further boosts the interaction between mid-IR photons and analyte molecules. MIP-PS spectroscopic detection of nitrile or nitro group in ~130 molecules was demonstrated. This method heralds potential in ultrasensitive bond-selective biosensing and bioimaging.
大多数分子和介电材料在中红外波段具有特征性的键振动或声子模式。然而,由于红外传感器的量子效率较低,红外吸收光谱法缺乏检测痕量分析物的灵敏度。在此,我们报告了中红外光热等离子体散射(MIP-PS)光谱法,以将红外检测极限推向等离子体纳米腔中近百个分子的水平。来自膜上纳米颗粒腔的等离子体散射对纳米间隙内分析物分子所定义的间距具有极高的灵敏度。同时,在键振动频率处1000倍的红外光强度增强进一步促进了中红外光子与分析物分子之间的相互作用。我们展示了对约130种分子中的腈基或硝基进行MIP-PS光谱检测。该方法在超灵敏的键选择性生物传感和生物成像方面具有潜力。