Suppr超能文献

用于模拟脑刺激的人体头部模型和群体框架。

Human head models and populational framework for simulating brain stimulations.

作者信息

Berger Taylor A, Wischnewski Miles, Opitz Alexander, Alekseichuk Ivan

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.

Department of Experimental Psychology, University of Groningen, Groningen, the Netherlands.

出版信息

Sci Data. 2025 Mar 27;12(1):516. doi: 10.1038/s41597-025-04886-0.

Abstract

Noninvasive brain stimulation (NIBS) is pivotal in studying human brain-behavior relations and treating brain disorders. NIBS effectiveness relies on informed targeting of specific brain regions, a challenge due to anatomical differences between humans. Computational volumetric head modeling can capture individual effects and enable comparison across a population. However, most studies implementing modeling use a single-head model, ignoring morphological variability, potentially skewing interpretation, and realistic precision. We present a comprehensive dataset of 100 realistic head models with variable tissue conductivity values, lead-field matrices, standard-space co-registrations, and quality-assured tissue segmentations to provide a large sample of healthy adult head models with anatomical and tissue variance. Leveraging the Human Connectome Project s1200 release, this dataset powers population head modeling for stimulation target optimization, MEEG source modeling simulations, and advanced meta-analysis of brain stimulation studies. We performed a quality assessment for each head mesh, which included a semi-manual segmentation accuracy correction and finite-element analysis quality measures. This dataset will facilitate brain stimulation developments in academic and clinical research.

摘要

无创脑刺激(NIBS)在研究人类脑-行为关系及治疗脑部疾病方面至关重要。NIBS的有效性依赖于对特定脑区的精准靶向,而由于个体间的解剖差异,这是一项挑战。计算性容积头部建模能够捕捉个体效应并实现群体间的比较。然而,大多数实施建模的研究使用单一头部模型,忽略了形态学变异性,这可能会扭曲解释并影响实际精度。我们展示了一个包含100个真实头部模型的综合数据集,这些模型具有可变的组织电导率值、导联场矩阵、标准空间配准以及经过质量保证的组织分割,以提供大量具有解剖和组织差异的健康成人大脑模型样本。利用人类连接体计划(Human Connectome Project)的s1200版本,该数据集为刺激靶点优化的群体头部建模、脑磁图源建模模拟以及脑刺激研究的高级荟萃分析提供了支持。我们对每个头部网格进行了质量评估,其中包括半自动分割精度校正和有限元分析质量指标。该数据集将促进学术和临床研究中的脑刺激发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cdd/11950330/3046875ed32a/41597_2025_4886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验