Suppr超能文献

通过机器学习和技术动作频率预测羽毛球比赛结果

Predicting badminton outcomes through machine learning and technical action frequencies.

作者信息

Sheng Yi, Liu Cheng, Yi Qing, Ouyang Wanli, Wang Ru, Chen Peijie

机构信息

School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China.

School of Kinesiology, Shanghai University of Sport, Qingyuanhuan Road, #650, Yangpu District, Shanghai, China.

出版信息

Sci Rep. 2025 Mar 27;15(1):10575. doi: 10.1038/s41598-025-87610-7.

Abstract

The application of machine learning techniques to predict badminton match outcomes through the analysis of technical actions seems to represent an area that has not yet been extensively investigated within the existing body of research. This study aims to interpret this phenomenon by developing a predictive model based on the frequency of technical actions, utilizing machine learning techniques. Focusing on international competitions from 2019 to 2023, we collected data on 23 distinct technical actions (e.g., Net Front, Slice/Drop, Push) to construct predictive models. The study distinguishes itself by employing a Random Forest algorithm to ascertain the significance of each technical action, utilizing forward stepwise selection and 5-fold cross-validation for feature refinement. SHAP value analysis further validated the pivotal roles of 'Net Front', 'Slice/Drop', and 'Push' across both sexes, linking higher frequencies of 'Net Front' with increased match-winning probabilities. Model validation on a test set demonstrated effective performance in both sexes, with the model based on male data exhibiting higher accuracy and predictive values, surpassing the performance of the female data model. This comprehensive examination, grounded in quantitative analysis, not only enhances our understanding of badminton gameplay dynamics but also offers valuable insights for coaching strategies and training methodologies. To extend the applicability of our findings and facilitate user engagement, we developed a web application based on our model. This platform enables players, coaches, and researchers to input player characteristics and receive strategic recommendation through an intuitive interface, further leveraging the machine learning model's capabilities to support tactical decision-making before badminton competitions.

摘要

通过对技术动作的分析,将机器学习技术应用于预测羽毛球比赛结果,这似乎是一个在现有研究领域中尚未得到广泛研究的领域。本研究旨在通过利用机器学习技术,基于技术动作的频率开发一个预测模型来解释这一现象。以2019年至2023年的国际比赛为重点,我们收集了23种不同技术动作(如网前、切放、推球)的数据,以构建预测模型。该研究的独特之处在于采用随机森林算法来确定每个技术动作的重要性,并利用前向逐步选择和5折交叉验证来优化特征。SHAP值分析进一步验证了“网前”、“切放”和“推球”在男女比赛中的关键作用,将“网前”的较高频率与增加的获胜概率联系起来。在测试集上的模型验证表明,该模型在男女比赛中均表现出有效的性能,基于男性数据的模型表现出更高的准确性和预测价值,超过了基于女性数据的模型。这项基于定量分析的全面研究不仅加深了我们对羽毛球比赛动态的理解,还为教练策略和训练方法提供了有价值的见解。为了扩展我们研究结果的适用性并促进用户参与,我们基于我们的模型开发了一个网络应用程序。这个平台使球员、教练和研究人员能够输入球员特征,并通过直观的界面获得战略建议,进一步利用机器学习模型的能力来支持羽毛球比赛前的战术决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a95f/11950166/76b54c75c859/41598_2025_87610_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验