Lu Zhulian, Zhang Junyang, Zhu Xiaohong
Department of Mathematics, Jinan University, Guangzhou 510632, China.
Entropy (Basel). 2025 Mar 6;27(3):275. doi: 10.3390/e27030275.
In this paper, we study numerical algorithms based on Physics-Informed Neural Networks (PINNs) for solving a mixed Stokes/Darcy model that describes a fluid flow coupled with a porous media flow. A Hard Constrained Parallel PINN (HC-PPINN) is proposed for the mixed model, in which the boundary conditions are enforced by modified the neural network architecture. Numerical experiments with different settings are conducted to demonstrate the accuracy and efficiency of our method by comparing it with the methods based on vanilla PINNs for the mixed model.
在本文中,我们研究基于物理信息神经网络(PINNs)的数值算法,用于求解一个混合的斯托克斯/达西模型,该模型描述了与多孔介质流耦合的流体流动。针对该混合模型提出了一种硬约束并行PINN(HC-PPINN),其中通过修改神经网络架构来施加边界条件。进行了不同设置的数值实验,通过与基于普通PINNs的混合模型方法进行比较,来证明我们方法的准确性和效率。