Suppr超能文献

基于表面增强拉曼散射和人血清多变量分析的呼吸道疾病检测

Detection of Respiratory Disease Based on Surface-Enhanced Raman Scattering and Multivariate Analysis of Human Serum.

作者信息

Khristoforova Yulia, Bratchenko Lyudmila, Kupaev Vitalii, Senyushkin Dmitry, Skuratova Maria, Wang Shuang, Lebedev Petr, Bratchenko Ivan

机构信息

Department of Laser and Biotechnical Systems, Samara National Research University, 34 Moskovskoe Shosse, 443086 Samara, Russia.

Family Medicine Department, North-Western State Medical University Named after I.I. Mechnikov, 41 Kirochnaya Street, 191015 Saint-Petersburg, Russia.

出版信息

Diagnostics (Basel). 2025 Mar 8;15(6):660. doi: 10.3390/diagnostics15060660.

Abstract

: Chronic obstructive pulmonary disease (COPD) is a significant public health concern, affecting millions of people worldwide. This study aims to use Surface-Enhanced Raman Scattering (SERS) technology to detect the presence of respiratory conditions, with a focus on COPD. : The samples of human serum from 41 patients with respiratory diseases (11 patients with COPD, 20 with bronchial asthma (BA), and 10 with asthma-COPD overlap syndrome) and 103 patients with ischemic heart disease, complicated by chronic heart failure (CHF), were analyzed using SERS. A multivariate analysis of the SERS characteristics of human serum was performed using Partial Least Squares Discriminant Analysis (PLS-DA) to classify the following groups: (1) all respiratory disease patients versus the pathological referent group, which included CHF patients, and (2) patients with COPD versus those with BA. : We found that a combination of SERS characteristics at 638 and 1051 cm could help to identify respiratory diseases. The PLS-DA model achieved a mean predictive accuracy of 0.92 for classifying respiratory diseases and the pathological referent group (0.85 sensitivity, 0.97 specificity). However, in the case of differentiating between COPD and BA, the mean predictive accuracy was only 0.61. : Therefore, the metabolic and proteomic composition of human serum shows significant differences in respiratory disease patients compared to the pathological referent group, but the differences between patients with COPD and BA are less significant, suggesting a similarity in the serum and general pathogenetic mechanisms of these two conditions.

摘要

慢性阻塞性肺疾病(COPD)是一个重大的公共卫生问题,影响着全球数百万人。本研究旨在使用表面增强拉曼散射(SERS)技术检测呼吸道疾病的存在,重点是COPD。:对41例呼吸道疾病患者(11例COPD患者、20例支气管哮喘(BA)患者和10例哮喘-COPD重叠综合征患者)以及103例合并慢性心力衰竭(CHF)的缺血性心脏病患者的人血清样本进行了SERS分析。使用偏最小二乘判别分析(PLS-DA)对人血清的SERS特征进行多变量分析,以对以下组进行分类:(1)所有呼吸道疾病患者与包括CHF患者在内的病理参照组,以及(2)COPD患者与BA患者。:我们发现,638和1051 cm处的SERS特征组合有助于识别呼吸道疾病。PLS-DA模型在对呼吸道疾病和病理参照组进行分类时的平均预测准确率为0.92(灵敏度0.85,特异性0.97)。然而,在区分COPD和BA时,平均预测准确率仅为0.61。:因此,与病理参照组相比,呼吸道疾病患者的人血清代谢和蛋白质组组成存在显著差异,但COPD患者和BA患者之间的差异较小,这表明这两种疾病在血清和一般发病机制上具有相似性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0672/11940998/cb24e8ac0acb/diagnostics-15-00660-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验