Suppr超能文献

通过微博数据理解后疫情时代的公众情绪:时空动态

Understanding Public Emotions: Spatiotemporal Dynamics in the Post-Pandemic Era Through Weibo Data.

作者信息

Liu Yi, Yan Xiaohan, Liu Tiezhong, Chen Yan

机构信息

School of Management, Beijing Institute of Technology, Beijing 100081, China.

Crisis Management Research Center, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Behav Sci (Basel). 2025 Mar 14;15(3):364. doi: 10.3390/bs15030364.

Abstract

Prolonged exposure to public health crises in the post-pandemic era poses significant threats to global mental health. To address this, we developed a conceptual model to analyse the spatiotemporal distribution of public emotions, using Weibo data from the 2022 Beijing bar outbreak (9 June-18 August). The model integrates lexicon-based emotion analysis, spatial autocorrelation tests, and content analysis to provide a comprehensive understanding of emotional responses across stages and regions. The findings reveal a multi-peak emotional cycle spanning emergency, contagion, and resolution stages, with significant emotional clustering in emergency zones, surrounding areas, and regions visited by infected individuals. Through coding, we identified 24 main-categories and 90 sub-categories, distilled into nine core themes that illustrate the interplay between influencing factors, public emotions, and online behaviours. Positive public emotions (e.g., hopefulness, gratitude, optimism) were linked to pandemic improvements and policy implementation, driving behaviours such as supporting prevention measures and resisting misinformation. Negative emotions (e.g., anger, anxiety, sadness) stemmed from severe outbreaks, insufficient controls, and restrictions on freedoms, leading to criticism and calls for accountability. This study bridges big data analytics with behavioural science, offering critical insights into evolving public emotions and behaviours. By highlighting spatiotemporal patterns and emotional dynamics, it provides actionable guidance for governments and health organizations to design targeted interventions, foster resilience, and better manage future social crises with precision and empathy.

摘要

在后疫情时代,长期暴露于公共卫生危机对全球心理健康构成了重大威胁。为解决这一问题,我们开发了一个概念模型,以分析公众情绪的时空分布,该模型使用了来自2022年北京酒吧疫情爆发(6月9日至8月18日)的微博数据。该模型整合了基于词典的情感分析、空间自相关测试和内容分析,以全面了解不同阶段和地区的情绪反应。研究结果揭示了一个跨越紧急、传播和解决阶段的多峰情绪周期,在紧急区域、周边地区以及感染者到访过的地区存在显著的情绪聚集。通过编码,我们确定了24个主要类别和90个子类别,并提炼出九个核心主题,这些主题阐明了影响因素、公众情绪和网络行为之间的相互作用。积极的公众情绪(如希望、感激、乐观)与疫情改善和政策实施相关联,推动了诸如支持预防措施和抵制错误信息等行为。消极情绪(如愤怒、焦虑、悲伤)源于严重的疫情爆发、控制不力以及对自由的限制,导致了批评和问责呼声。本研究将大数据分析与行为科学相结合,为不断演变的公众情绪和行为提供了关键见解。通过突出时空模式和情绪动态,它为政府和卫生组织提供了可操作的指导,以设计有针对性的干预措施、培养适应力,并以精准和同理心更好地应对未来的社会危机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b4/11939568/3a3fc8f645ed/behavsci-15-00364-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验