Sharma Neha, Gupta Sheifali, Elkamchouchi Dalia H, Bharany Salil
Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Bioengineering (Basel). 2025 Mar 18;12(3):309. doi: 10.3390/bioengineering12030309.
The gastrointestinal (GI) tract, an integral part of the digestive system, absorbs nutrients from ingested food, starting from the mouth to the anus. GI tract cancer significantly impacts global health, necessitating precise treatment methods. Radiation oncologists use X-ray beams to target tumors while avoiding the stomach and intestines, making the accurate segmentation of these organs crucial. This research explores various combinations of encoders and decoders to segment the small bowel, large bowel, and stomach in MRI images, using the UW-Madison GI tract dataset consisting of 38,496 scans. Encoders tested include ResNet50, EfficientNetB1, MobileNetV2, ResNext50, and Timm_Gernet_S, paired with decoders UNet, FPN, PSPNet, PAN, and DeepLab V3+. The study identifies ResNet50 with DeepLab V3+ as the most effective combination, assessed using the Dice coefficient, Jaccard index, and model loss. The proposed model, a combination of DeepLab V3+ and ResNet 50, obtained a Dice value of 0.9082, an IoU value of 0.8796, and a model loss of 0.117. The findings demonstrate the method's potential to improve radiation therapy for GI cancer, aiding radiation oncologists in accurately targeting tumors while avoiding healthy organs. The results of this study will assist healthcare professionals involved in biomedical image analysis.
胃肠道是消化系统的一个组成部分,从口腔到肛门吸收摄入食物中的营养。胃肠道癌症对全球健康有重大影响,因此需要精确的治疗方法。放射肿瘤学家使用X射线束靶向肿瘤,同时避开胃和肠道,因此准确分割这些器官至关重要。本研究使用由38496次扫描组成的威斯康星大学麦迪逊分校胃肠道数据集,探索编码器和解码器的各种组合,以分割MRI图像中的小肠、大肠和胃。测试的编码器包括ResNet50、EfficientNetB1、MobileNetV2、ResNext50和Timm_Gernet_S,与解码器UNet、FPN、PSPNet、PAN和DeepLab V3+配对。该研究确定ResNet50与DeepLab V3+为最有效的组合,并使用Dice系数、Jaccard指数和模型损失进行评估。所提出的模型是DeepLab V3+和ResNet 50的组合,获得了0.9082的Dice值、0.8796的IoU值和0.117的模型损失。研究结果表明该方法在改善胃肠道癌症放射治疗方面的潜力,有助于放射肿瘤学家在避开健康器官的同时准确靶向肿瘤。本研究结果将有助于参与生物医学图像分析的医疗专业人员。