Suppr超能文献

用于超表面传感器智能开发的元注意力深度学习

Meta-Attention Deep Learning for Smart Development of Metasurface Sensors.

作者信息

Gao Yuan, Chen Wei, Li Fajun, Zhuang Mingyong, Yan Yiming, Wang Jun, Wang Xiang, Dong Zhaogang, Ma Wei, Zhu Jinfeng

机构信息

Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, Fujian, 361005, China.

State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

出版信息

Adv Sci (Weinh). 2024 Nov;11(42):e2405750. doi: 10.1002/advs.202405750. Epub 2024 Sep 9.

Abstract

Optical metasurfaces with pronounced spectral characteristics are promising for sensor applications. Currently, deep learning (DL) offers a rapid manner to design various metasurfaces. However, conventional DL models are usually assumed as black boxes, which is difficult to explain how a DL model learns physical features, and they usually predict optical responses of metasurfaces in a fuzzy way. This makes them incapable of capturing critical spectral features precisely, such as high quality (Q) resonances, and hinders their use in designing metasurface sensors. Here, a transformer-based explainable DL model named Metaformer for the high-intelligence design, which adopts a spectrum-splitting scheme to elevate 99% prediction accuracy through reducing 99% training parameters, is established. Based on the Metaformer, all-dielectric metasurfaces based on quasi-bound states in the continuum (Q-BIC) for high-performance metasensing are designed, and fabrication experiments are guided potently. The explainable learning relies on spectral position encoding and multi-head attention of meta-optics features, which overwhelms traditional black-box models dramatically. The meta-attention mechanism provides deep physics insights on metasurface sensors, and will inspire more powerful DL design applications on other optical devices.

摘要

具有显著光谱特性的光学超表面在传感器应用方面颇具前景。目前,深度学习(DL)为设计各种超表面提供了一种快速的方法。然而,传统的DL模型通常被视为黑箱,难以解释DL模型如何学习物理特征,并且它们通常以模糊的方式预测超表面的光学响应。这使得它们无法精确捕捉关键的光谱特征,如高品质(Q)共振,并阻碍了它们在设计超表面传感器中的应用。在此,建立了一种基于变压器的可解释DL模型Metaformer用于高智能设计,该模型采用频谱分割方案,通过减少99%的训练参数将预测准确率提高到99%。基于Metaformer,设计了基于连续统中的准束缚态(Q-BIC)的全介质超表面用于高性能超传感,并有力地指导了制造实验。可解释学习依赖于光谱位置编码和元光学特征的多头注意力,这大大超越了传统的黑箱模型。元注意力机制为超表面传感器提供了深入的物理见解,并将激发在其他光学器件上更强大的DL设计应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b786/11558086/7e315ace4e14/ADVS-11-2405750-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验