Cao Peng, Xia Linghao, Li Xianggui, Deng Meng, Zhang Zhonghui, Lin Xiangyu, Wu Zeyong, Hao Yingchen, Liu Penghui, Wang Chao, Li Chun, Yang Jie, Lai Jun, Yang Jun, Wang Shouchuang
National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China.
J Integr Plant Biol. 2025 Jul;67(7):1947-1964. doi: 10.1111/jipb.13899. Epub 2025 Mar 28.
Plants have evolved a sophisticated chemical defense network to counteract pathogens, with phenolamides and salicylic acid (SA) playing pivotal roles in the immune response. However, the synergistic regulatory mechanisms of their biosynthesis remain to be explored. Here, we identified a biosynthetic gene cluster on chromosome 2 (BGC2) associated with the biosynthesis of phenolamide and SA, wherein the key component SlEPS1 exhibits dual catalytic functions for the synthesis of phenolamides and SA. Overexpression of the key component SlEPS1 of BGC2 in tomato enhanced resistance to the bacterial pathogen Pst DC3000, whereas knockout plants were more susceptible. Exogenous applications of SA and phenolamides revealed that these two compounds act synergistically to enhance plant resistance. Notably, during tomato domestication, a disease-resistant allele of SlEPS1, SlEPS1, was subject to negative selection, leading to a reduction in phenolamide and SA levels and compromised disease resistance in modern varieties. Moreover, the SlMYB78 directly regulates the BGC2 gene cluster to enhance phenolamide and SA biosynthesis, modulating resistance to Pst DC3000. Our study employed multi-omics approaches to describe the synergistic regulation of phenolamide and SA biosynthesis, offering new insights into the complexity of plant immune-related metabolism.
植物已经进化出一套复杂的化学防御网络来对抗病原体,其中酚酰胺和水杨酸(SA)在免疫反应中发挥着关键作用。然而,它们生物合成的协同调控机制仍有待探索。在此,我们在2号染色体上鉴定出一个与酚酰胺和SA生物合成相关的生物合成基因簇(BGC2),其中关键组分SlEPS1对酚酰胺和SA的合成具有双重催化功能。在番茄中过表达BGC2的关键组分SlEPS1可增强对细菌病原体Pst DC3000的抗性,而敲除植株则更易感病。SA和酚酰胺的外源施用表明这两种化合物协同作用以增强植物抗性。值得注意的是,在番茄驯化过程中,SlEPS1的一个抗病等位基因SlEPS1受到负选择,导致现代品种中酚酰胺和SA水平降低以及抗病性受损。此外,SlMYB78直接调控BGC2基因簇以增强酚酰胺和SA的生物合成,调节对Pst DC3000的抗性。我们的研究采用多组学方法描述了酚酰胺和SA生物合成的协同调控,为植物免疫相关代谢的复杂性提供了新的见解。