Suppr超能文献

AVPpred-BWR:通过生物词汇表征进行抗病毒肽预测

AVPpred-BWR: antiviral peptides prediction via biological words representation.

作者信息

Wei Zhuoyu, Shen Yongqi, Tang Xiang, Wen Jian, Song Youyi, Wei Mingqiang, Cheng Jing, Zhu Xiaolei

机构信息

School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China.

School of Science, China Pharmaceutical University, Nanjing 210009, China.

出版信息

Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf126.

Abstract

MOTIVATION

Antiviral peptides (AVPs) are short chains of amino acids, showing great potential as antiviral drugs. The traditional wisdom (e.g. wet experiments) for identifying the AVPs is time-consuming and laborious, while cutting-edge computational methods are less accurate to predict them.

RESULTS

In this article, we propose an AVPs prediction model via biological words representation, dubbed AVPpred-BWR. Based on the fact that the secondary structures of AVPs mainly consist of α-helix and loop, we explore the biological words of 1mer (corresponding to loops) and 4mer (4 continuous residues, corresponding to α-helix). That is, the peptides sequences are decomposed into biological words, and then the concealed sequential information is represented by training the Word2Vec models. Moreover, in order to extract multi-scale features, we leverage a CNN-Transformer framework to process the embeddings of 1mer and 4mer generated by Word2Vec models. To the best of our knowledge, this is the first time to realize the word segmentation of protein primary structure sequences based on the regularity of protein secondary structure. AVPpred-BWR illustrates clear improvements over its competitors on the independent test set (e.g. improvements of 4.6% and 11.0% for AUROC and MCC, respectively, compared to UniDL4BioPep).

AVAILABILITY AND IMPLEMENTATION

AVPpred-BWR is publicly available at: https://github.com/zyweizm/AVPpred-BWR or https://zenodo.org/records/14880447 (doi: 10.5281/zenodo.14880447).

摘要

动机

抗病毒肽(AVP)是短链氨基酸,作为抗病毒药物具有巨大潜力。识别AVP的传统方法(如湿实验)既耗时又费力,而前沿的计算方法预测AVP的准确性较低。

结果

在本文中,我们提出了一种基于生物词表示的AVP预测模型,称为AVPpred - BWR。基于AVP的二级结构主要由α - 螺旋和环组成这一事实,我们探索了1聚体(对应环)和4聚体(4个连续残基,对应α - 螺旋)的生物词。也就是说,将肽序列分解为生物词,然后通过训练Word2Vec模型来表示隐藏的序列信息。此外,为了提取多尺度特征,我们利用CNN - Transformer框架来处理由Word2Vec模型生成的1聚体和4聚体的嵌入。据我们所知,这是首次基于蛋白质二级结构的规律性实现蛋白质一级结构序列的词分割。在独立测试集上,AVPpred - BWR相对于其竞争对手有明显改进(例如,与UniDL4BioPep相比,AUROC和MCC分别提高了4.6%和11.0%)。

可用性和实现方式

AVPpred - BWR可在以下网址公开获取:https://github.com/zyweizm/AVPpred - BWR 或 https://zenodo.org/records/14880447(doi:10.5281/zenodo.14880447)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f46e/11968319/fa2667220fce/btaf126f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验