Suppr超能文献

利用卷积神经网络对猴痘皮肤损伤进行分类。

Utilizing convolutional neural networks to classify monkeypox skin lesions.

机构信息

Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box: 400, 31982, Al-Ahsa, Saudi Arabia.

Department of Computer Science, Faculty of Science, Minia University, Minya, Egypt.

出版信息

Sci Rep. 2023 Sep 3;13(1):14495. doi: 10.1038/s41598-023-41545-z.

Abstract

Monkeypox is a rare viral disease that can cause severe illness in humans, presenting with skin lesions and rashes. However, accurately diagnosing monkeypox based on visual inspection of the lesions can be challenging and time-consuming, especially in resource-limited settings where laboratory tests may not be available. In recent years, deep learning methods, particularly Convolutional Neural Networks (CNNs), have shown great potential in image recognition and classification tasks. To this end, this study proposes an approach using CNNs to classify monkeypox skin lesions. Additionally, the study optimized the CNN model using the Grey Wolf Optimizer (GWO) algorithm, resulting in a significant improvement in accuracy, precision, recall, F1-score, and AUC compared to the non-optimized model. The GWO optimization strategy can enhance the performance of CNN models on similar tasks. The optimized model achieved an impressive accuracy of 95.3%, indicating that the GWO optimizer has improved the model's ability to discriminate between positive and negative classes. The proposed approach has several potential benefits for improving the accuracy and efficiency of monkeypox diagnosis and surveillance. It could enable faster and more accurate diagnosis of monkeypox skin lesions, leading to earlier detection and better patient outcomes. Furthermore, the approach could have crucial public health implications for controlling and preventing monkeypox outbreaks. Overall, this study offers a novel and highly effective approach for diagnosing monkeypox, which could have significant real-world applications.

摘要

猴痘是一种罕见的病毒性疾病,可导致人类严重疾病,表现为皮肤损伤和皮疹。然而,仅通过目视检查损伤来准确诊断猴痘可能具有挑战性和耗时,特别是在资源有限的环境中,可能无法进行实验室测试。近年来,深度学习方法,特别是卷积神经网络(CNN),在图像识别和分类任务中显示出巨大的潜力。为此,本研究提出了一种使用 CNN 对猴痘皮肤损伤进行分类的方法。此外,本研究使用灰狼优化器(GWO)算法对 CNN 模型进行了优化,与未经优化的模型相比,该模型在准确性、精度、召回率、F1 分数和 AUC 方面有了显著提高。GWO 优化策略可以提高 CNN 模型在类似任务中的性能。优化后的模型实现了令人印象深刻的 95.3%的准确性,表明 GWO 优化器提高了模型区分阳性和阴性类别的能力。该方法有几个潜在的好处,可以提高猴痘诊断和监测的准确性和效率。它可以实现更快、更准确的猴痘皮肤损伤诊断,从而更早地发现并改善患者的预后。此外,该方法对于控制和预防猴痘爆发具有至关重要的公共卫生意义。总体而言,本研究为诊断猴痘提供了一种新颖且高效的方法,具有重要的实际应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd93/10475460/e78cff00daa4/41598_2023_41545_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验