Fichtner Andreas, Hannesen Björn, Stein Felix, Schrofner-Brunner Benedikt, Pohl Thomas, Grab Thomas, Koch Thea, Fieback Tobias
Medical Faculty C.-G.-Carus, TU Dresden, Dresden, Germany.
TU Bergakademie Freiberg, Freiberg, Germany.
Sports Med Open. 2025 Mar 28;11(1):29. doi: 10.1186/s40798-025-00832-x.
Even well-planned no-decompression dives can still produce inert gas bubbles that increase decompression sickness risk. A previously proposed formula for predicting post-dive bubble grades integrates individual factors (age, breathing gas consumption) with dive parameters (maximum depth, surface interval). This study aimed to confirm the formula's validity in an independent dataset and to find out whether detailed dive profile data are of further relevance in predicting echocardiography-derived post-dive bubble grades. Additionally, we explored whether machine learning models leveraging detailed dive profile data could enhance predictive accuracy.
A total of 59 divers performed 359 no-decompression open-circuit air dives in freshwater and saltwater. Post-dive transthoracic echocardiography detected bubbles (Eftedal-Brubakk grade ≥ 1) in 29.8% of dives. Maximum depth, total dive time, air consumption, and age correlated significantly with observed bubble grades (r=0.37, r=0.16, r=0.27, r=0.13, respectively). The original prediction formula remained valid (r=0.39) and adequately captured higher-grade dives. Spending additional time in shallow water after deep segments reduced bubble formation. Machine learning approaches based on typical dive computer data (e.g. dive profile) provided stronger predictions (r=0.49).
This study shows that maximum depth, age, surface interval and total breathing gas consumption are sufficient predictors of post-dive bubble load in no-decompression air dives. This allows divers to individually adopt bubble-reducing measures-such as resting, hydrating, and extending surface intervals-once alerted to a higher-risk class. Integrating the formula into dive computers may offer real-time, individualised risk guidance and help prevent decompression sickness despite following computer-derived profiles in recreational diving.
即使是精心规划的免减压潜水仍可能产生惰性气泡,从而增加减压病风险。先前提出的用于预测潜水后气泡等级的公式将个体因素(年龄、呼吸气体消耗量)与潜水参数(最大深度、水面间隔时间)结合在一起。本研究旨在在一个独立的数据集中验证该公式的有效性,并探究详细的潜水剖面数据在预测超声心动图得出的潜水后气泡等级方面是否具有更大的相关性。此外,我们还探讨了利用详细潜水剖面数据的机器学习模型是否可以提高预测准确性。
共有59名潜水员在淡水和海水中进行了359次免减压开放式空气潜水。潜水后经胸超声心动图检查发现,29.8%的潜水存在气泡(埃费达尔-布鲁巴克等级≥1级)。最大深度、总潜水时间、空气消耗量和年龄与观察到的气泡等级显著相关(分别为r = 0.37、r = 0.16、r = 0.27、r = 0.13)。原始预测公式仍然有效(r = 0.39),并能充分捕捉到较高等级的潜水情况。在深潜段之后在浅水区停留额外时间可减少气泡形成。基于典型潜水计算机数据(如潜水剖面)的机器学习方法提供了更强的预测能力(r = 0.49)。
本研究表明,最大深度、年龄、水面间隔时间和总呼吸气体消耗量足以预测免减压空气潜水中潜水后的气泡负荷。这使得潜水员一旦得知自己属于高风险类别,就可以单独采取减少气泡的措施,如休息、补水和延长水面间隔时间。将该公式集成到潜水计算机中可能会提供实时、个性化的风险指导,并有助于在休闲潜水中遵循计算机得出的剖面的情况下预防减压病。