Yadav Amit Kumar, Kumar Raj, Wang Meizi, Fekete Gusztáv, Singh Tej
School of Computer Science and Artificial Intelligence, SR University, Warangal, Telangana, 506371, India.
Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea.
Sci Rep. 2025 Mar 28;15(1):10786. doi: 10.1038/s41598-025-95281-7.
Photovoltaic power plant outputs depend on the daily global solar radiation (DGSR). The main issue with DGSR data is its lack of precision. The potential unavailability of DGSR data for several sites can be attributed to the high cost of measuring instruments and the intermittent nature of time series data due to equipment malfunctions. Therefore, DGSR prediction research is crucial nowadays to produce photovoltaic power. Different artificial neural network (ANN) models will give different DGSR predictions with varying levels of accuracy, so it is essential to compare the different ANN model inputs with various sets of meteorological stochastic variables. In this study, radial basis function neural network (RBFNN), long short-term memory neural network (LSTMNN), modular neural network (MNN), and transformer model (TM) are developed to investigate the performances of these algorithms for the DGSR prediction using different combinations of meteorological stochastic variables. These models employ five stochastic variables: wind speed, relative humidity, minimum, maximum, and average temperatures. The mean absolute relative error for the transformer model with input variables as average, maximum, and minimum temperatures is 1.98. ANN models outperform traditional models in predictive accuracy.
光伏电站的输出取决于每日全球太阳辐射(DGSR)。DGSR数据的主要问题在于其缺乏精确性。多个站点的DGSR数据可能无法获取,这可归因于测量仪器成本高昂以及由于设备故障导致时间序列数据具有间歇性。因此,如今DGSR预测研究对于光伏发电至关重要。不同的人工神经网络(ANN)模型会给出不同的DGSR预测结果,且准确率各不相同,所以将不同的ANN模型输入与各种气象随机变量集进行比较至关重要。在本研究中,开发了径向基函数神经网络(RBFNN)、长短期记忆神经网络(LSTMNN)、模块化神经网络(MNN)和变压器模型(TM),以研究这些算法使用不同气象随机变量组合进行DGSR预测的性能。这些模型采用五个随机变量:风速、相对湿度、最低温度、最高温度和平均温度。输入变量为平均温度、最高温度和最低温度时,变压器模型的平均绝对相对误差为1.98。ANN模型在预测准确性方面优于传统模型。