Suppr超能文献

用于中国不同气候区日净辐射预测的机器学习模型。

Machine learning models for daily net radiation prediction across different climatic zones of China.

作者信息

Yu Haiying, Jiang Shouzheng, Chen Minzhi, Wang Mingjun, Shi Rui, Li Songyu, Wu Jinfeng, Kui Xiu, Zou Haoting, Zhan Cun

机构信息

College of Engineering, Sichuan Normal University, Chengdu, 610066, China.

State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China.

出版信息

Sci Rep. 2024 Sep 3;14(1):20454. doi: 10.1038/s41598-024-71550-9.

Abstract

Net radiation (R), a critical component in land surface energy cycling, is calculated as the difference between net shortwave radiation and longwave radiation at the Earth's surface and holds significant importance in crop models for precision agriculture management. In this study, we examined the performance of four machine learning models, including extreme learning machine (ELM), hybrid artificial neural networks with genetic algorithm models (GANN), generalized regression neural networks (GRNN), and random forests (RF), in estimating daily R at four representative sites across different climatic zones of China. The input variables included common meteorological factors such as minimum and maximum temperature, relative humidity, sunshine duration, and shortwave solar radiation. Model performance was assessed and compared using statistical parameters such as the correlation coefficient (R), root mean square errors (RMSE), mean absolute errors (MAE), and Nash-Sutcliffe coefficient (NS). The results indicated that all models slightly underestimated actual R, with linear regression slopes ranging from 0.810 to 0.870 across different zones. The estimated R was found to be comparable to observed values in terms of data distribution characteristics. Among the models, the ELM and GANN demonstrated higher consistency with observed values, exhibiting R values ranging from 0.838 to 0.963 and 0.836 to 0.963, respectively, across varying climatic zones. These values surpassed those of the RF (0.809-0.959) and GRNN (0.812-0.949) models. Additionally, the ELM and GANN models showed smaller simulation errors in terms of RMSE, MAE, and NS across the four climatic zones compared to the RF and GRNN models. Overall, the ELM and GANN models outperformed the RF and GRNN models. Notably, the ELM model's faster computational speed makes it a strong recommendation for R estimates across different climatic zones of China.

摘要

净辐射(R)是陆地表面能量循环的一个关键组成部分,它被计算为地球表面净短波辐射与长波辐射之间的差值,在精准农业管理的作物模型中具有重要意义。在本研究中,我们考察了四种机器学习模型,包括极限学习机(ELM)、带遗传算法模型的混合人工神经网络(GANN)、广义回归神经网络(GRNN)和随机森林(RF),在中国不同气候区的四个代表性站点估算每日净辐射(R)的性能。输入变量包括常见气象因素,如最低和最高温度、相对湿度、日照时长和短波太阳辐射。使用相关系数(R)、均方根误差(RMSE)、平均绝对误差(MAE)和纳什 - 萨特克利夫系数(NS)等统计参数对模型性能进行评估和比较。结果表明,所有模型都略微低估了实际净辐射(R),不同区域的线性回归斜率在0.810至0.870之间。就数据分布特征而言,估算的净辐射(R)与观测值具有可比性。在这些模型中,ELM和GANN与观测值表现出更高的一致性,在不同气候区的R值分别为0.838至0.963和0.836至0.963。这些值超过了RF(0.809 - 0.959)和GRNN(0.812 - 0.949)模型。此外,与RF和GRNN模型相比,ELM和GANN模型在四个气候区的RMSE、MAE和NS方面显示出较小的模拟误差。总体而言,ELM和GANN模型优于RF和GRNN模型。值得注意的是,ELM模型更快的计算速度使其成为中国不同气候区净辐射(R)估算的有力推荐模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cffc/11372053/4d70924522f5/41598_2024_71550_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验