Shu Peng, Huang Ling, Huo Shanshan, Qiu Jun, Bai Haitao, Wang Xia, Xu Fang
The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No.26, Shengli Street, Jiang'an District, Wuhan, Hubei, China.
Eur J Med Res. 2025 Mar 29;30(1):217. doi: 10.1186/s40001-025-02490-x.
Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction.
Clinical data from 974 patients (55 features) undergoing arteriovenous fistula dialysis at The Central Hospital of Wuhan (2017-2024) were analyzed retrospectively. The dataset was split into training (70%) and test (30%) sets. Seven models-Random Forest, XGBoost, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, Artificial Neural Network, and Decision Tree-were trained. Performance was evaluated using F1 score, accuracy, specificity, precision, recall, and AUC-ROC. SHAP values identified key predictors in the optimal model.
XGBoost achieved the highest AUC (0.829, 95% CI 0.785-0.880). SHAP analysis highlighted seven critical predictors: number of surgeries, prothrombin time activity, lymphocyte count, fistula duration, triglycerides, vitamin B12, and C-reactive protein.
The XGBoost model effectively predicts arteriovenous fistula stenosis risk using clinical data. SHAP explanations enhance clinical interpretability, aiding personalized care strategies.
动静脉内瘘狭窄是血液透析患者常见的并发症,但缺乏有效的预测工具。本研究旨在开发一种可解释的机器学习模型用于狭窄风险预测。
回顾性分析了武汉市中心医院974例接受动静脉内瘘透析患者(55个特征)的临床数据(2017 - 2024年)。数据集被分为训练集(70%)和测试集(30%)。训练了七个模型——随机森林、XGBoost、支持向量机、逻辑回归、K近邻、人工神经网络和决策树。使用F1分数、准确率、特异性、精确率、召回率和AUC - ROC评估性能。SHAP值确定了最优模型中的关键预测因素。
XGBoost模型的AUC最高(0.829,95%置信区间0.785 - 0.880)。SHAP分析突出了七个关键预测因素:手术次数、凝血酶原时间活动度、淋巴细胞计数、内瘘使用时间、甘油三酯、维生素B12和C反应蛋白。
XGBoost模型利用临床数据有效预测动静脉内瘘狭窄风险。SHAP解释增强了临床可解释性,有助于制定个性化护理策略。