Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland.
Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland.
Nat Nanotechnol. 2023 Sep;18(9):1078-1084. doi: 10.1038/s41565-023-01412-4. Epub 2023 Jun 19.
In current nanopore-based label-free single-molecule sensing technologies, stochastic processes influence the selection of translocating molecule, translocation rate and translocation velocity. As a result, single-molecule translocations are challenging to control both spatially and temporally. Here we present a method using a glass nanopore mounted on a three-dimensional nanopositioner to spatially select molecules, deterministically tethered on a glass surface, for controlled translocations. By controlling the distance between the nanopore and glass surface, we can actively select the region of interest on the molecule and scan it a controlled number of times and at a controlled velocity. Decreasing the velocity and averaging thousands of consecutive readings of the same molecule increases the signal-to-noise ratio by two orders of magnitude compared with free translocations. We demonstrate the method's versatility by assessing DNA-protein complexes, DNA rulers and DNA gaps, achieving down to single-nucleotide gap detection.
在当前基于纳米孔的无标记单分子传感技术中,随机过程会影响被转运分子的选择、转运速率和转运速度。因此,单分子的转运在空间和时间上都难以控制。在这里,我们提出了一种使用安装在三维纳米定位器上的玻璃纳米孔的方法,对固定在玻璃表面上的分子进行空间选择,以进行受控的转运。通过控制纳米孔和玻璃表面之间的距离,我们可以主动选择分子上的感兴趣区域,并以受控的速度扫描它一定的次数。与自由转运相比,降低速度并对同一分子的数千次连续读数进行平均,可以将信噪比提高两个数量级。我们通过评估 DNA-蛋白质复合物、DNA 标尺和 DNA 缺口来证明该方法的多功能性,实现了低至单核苷酸缺口的检测。