Suppr超能文献

COVINet:一种基于深度学习的、可解释的美国各县新冠疫情轨迹预测模型。

COVINet: a deep learning-based and interpretable prediction model for the county-wise trajectories of COVID-19 in the United States.

作者信息

Jiang Yukang, Tian Ting, Zhou Wenting, Zhang Yuting, Li Zhongfei, Wang Xueqin, Zhang Heping

机构信息

School of Mathematics, Sun Yat-sen University, Guangzhou, People's Republic of China.

Business School, Southern University of Science and Technology, Shenzhen, People's Republic of China.

出版信息

J Appl Stat. 2024 Oct 8;52(5):1063-1080. doi: 10.1080/02664763.2024.2412284. eCollection 2025.

Abstract

The devastating impact of COVID-19 on the United States has been profound since its onset in January 2020. Predicting the trajectory of epidemics accurately and devising strategies to curb their progression are currently formidable challenges. In response to this crisis, we propose COVINet, which combines the architecture of Long Short-Term Memory and Gated Recurrent Unit, incorporating actionable covariates to offer high-accuracy prediction and explainable response. First, we train COVINet models for confirmed cases and total deaths with five input features, and compare Mean Absolute Errors (MAEs) and Mean Relative Errors (MREs) of COVINet against ten competing models from the United States CDC in the last four weeks before April 26, 2021. The results show COVINet outperforms all competing models for MAEs and MREs when predicting total deaths. Then, we focus on prediction for the most severe county in each of the top 10 hot-spot states using COVINet. The MREs are small for all predictions made in the last 7 or 30 days before March 23, 2023. Beyond predictive accuracy, COVINet offers high interpretability, enhancing the understanding of pandemic dynamics. This dual capability positions COVINet as a powerful tool for informing effective strategies in pandemic prevention and governmental decision-making.

摘要

自2020年1月新冠疫情在美国爆发以来,其造成的破坏性影响极为深远。准确预测疫情发展轨迹并制定遏制疫情蔓延的策略,是当前面临的巨大挑战。为应对这一危机,我们提出了COVINet,它结合了长短期记忆网络(Long Short-Term Memory)和门控循环单元(Gated Recurrent Unit)的架构,并纳入了可操作的协变量,以提供高精度预测和可解释的应对措施。首先,我们使用五个输入特征训练了针对确诊病例和总死亡人数的COVINet模型,并在2021年4月26日之前的最后四周,将COVINet的平均绝对误差(MAEs)和平均相对误差(MREs)与美国疾病控制与预防中心(CDC)的十个竞争模型进行比较。结果表明,在预测总死亡人数时,COVINet在MAEs和MREs方面均优于所有竞争模型。然后,我们使用COVINet对十大热点州中每个州最严重的县进行预测。在2023年3月23日之前的最后7天或30天内所做的所有预测中,MREs都很小。除了预测准确性之外,COVINet还具有高度的可解释性,有助于增强对疫情动态的理解。这种双重能力使COVINet成为制定有效疫情防控策略和政府决策的有力工具。

相似文献

5
Measures implemented in the school setting to contain the COVID-19 pandemic.学校为控制 COVID-19 疫情而采取的措施。
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.

本文引用的文献

1
REAL-TIME MECHANISTIC BAYESIAN FORECASTS OF COVID-19 MORTALITY.2019年冠状病毒病死亡率的实时机制贝叶斯预测
Ann Appl Stat. 2023 Sep;17(3):1801-1819. doi: 10.1214/22-aoas1671. Epub 2023 Sep 7.
3
The United States COVID-19 Forecast Hub dataset.美国 COVID-19 预测中心数据集。
Sci Data. 2022 Aug 1;9(1):462. doi: 10.1038/s41597-022-01517-w.
9
Model-based forecasting for Canadian COVID-19 data.基于模型的加拿大 COVID-19 数据预测。
PLoS One. 2021 Jan 19;16(1):e0244536. doi: 10.1371/journal.pone.0244536. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验