Zhang Wei, Mira Antonietta, Wit Ernst C
Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland.
Faculty of Economics, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland.
J Appl Stat. 2024 Oct 10;52(5):1017-1039. doi: 10.1080/02664763.2024.2411608. eCollection 2025.
COVID-19 has led to excess deaths around the world. However, the impact on mortality rates from other causes of death during this time remains unclear. To understand the broader impact of COVID-19 on other causes of death, we analyze Italian official data covering monthly mortality counts from January 2015 to December 2020. To handle the high-dimensional nature of the data, we developed a model that combines Poisson regression with tensor train decomposition to explore the lower-dimensional residual structure of the data. Our Bayesian approach incorporates prior information on model parameters and utilizes an efficient Metropolis-Hastings within Gibbs algorithm for posterior inference. Simulation studies were conducted to validate our approach. Our method not only identifies differential effects of interventions on cause-specific mortality rates through Poisson regression but also provides insights into the relationship between COVID-19 and other causes of death. Additionally, it uncovers latent classes related to demographic characteristics, temporal patterns, and causes of death.
新冠疫情已导致全球超额死亡。然而,在此期间它对其他死因死亡率的影响仍不明确。为了解新冠疫情对其他死因的更广泛影响,我们分析了意大利2015年1月至2020年12月涵盖每月死亡人数的官方数据。为处理数据的高维特性,我们开发了一种将泊松回归与张量列车分解相结合的模型,以探索数据的低维残差结构。我们的贝叶斯方法纳入了关于模型参数的先验信息,并利用吉布斯算法内的高效梅特罗波利斯-黑斯廷斯算法进行后验推断。进行了模拟研究以验证我们的方法。我们的方法不仅通过泊松回归确定干预措施对特定病因死亡率的差异影响,还能洞察新冠疫情与其他死因之间的关系。此外,它还揭示了与人口特征、时间模式和死因相关的潜在类别。