Chen Xinyi, Situ Yinglin, Yang Yuexuan, Fu Maylin Lum, Lyu Luna, Qi Lei Stanley
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.
bioRxiv. 2025 Mar 14:2025.03.12.642522. doi: 10.1101/2025.03.12.642522.
Trogocytosis, the transfer of plasma membrane fragments during cell-cell contact, offers potential for macromolecular delivery but is limited by uncertain fate of trogocytosed molecules, constraints to membrane cargo, and unclear generalizability. Here, we demonstrate that donor cells engineered with designed receptors specific to intrinsic ligands can transfer proteins to recipient cells through direct contact. We identified key principles for enhancing contact-mediated transfer and subsequent functionalization of transferred macromolecules, including receptor design, pH-responsive membrane fusion, inducible cargo localization, release, and subcellular translocation. Exploiting these findings, we developed TRANSFER, a versatile delivery system that integrates logic gate-based control to sense multiple ligand inputs and deliver diverse functional cargos for genome editing and targeted cell ablation across cell types. The study establishes trogocytosis as a novel, programmable framework for cell-based macromolecular delivery.
噬突作用,即在细胞间接触过程中质膜片段的转移,为大分子递送提供了潜力,但受噬突作用分子命运不确定、膜载物限制以及普遍适用性不明确的限制。在此,我们证明,用对内在配体具有特异性的设计受体进行工程改造的供体细胞可通过直接接触将蛋白质转移至受体细胞。我们确定了增强接触介导的转移以及随后转移大分子功能化的关键原则,包括受体设计、pH响应性膜融合、可诱导的载物定位、释放和亚细胞易位。利用这些发现,我们开发了TRANSFER,这是一种通用递送系统,它整合了基于逻辑门的控制,以感知多种配体输入,并为跨细胞类型的基因组编辑和靶向细胞消融递送多种功能性载物。该研究将噬突作用确立为一种用于基于细胞的大分子递送的新型可编程框架。