Ngan Tran Thi, Tra Dang Huong, Mai Ngo Thi Quynh, Dung Hoang Van, Khai Nguyen Van, Linh Pham Van, Phuong Nguyen Thi Thu
Faculty of Pharmacy & Biomedical-Pharmaceutical Sciences Research Group, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam.
Pharmacy Department, Hai Phong International Hospital, Hai Phong, Vietnam.
Front Endocrinol (Lausanne). 2025 Mar 14;16:1415206. doi: 10.3389/fendo.2025.1415206. eCollection 2025.
Hypothyroidism, a common endocrine disorder, has a high incidence in women and increases with age. Levothyroxine (LT4) is the standard therapy; however, achieving clinical and biochemical euthyroidism is challenging. Therefore, developing an accurate model for predicting LT4 dosage is crucial. This retrospective study aimed to identify factors affecting the daily dose of LT4 and develop a model to estimate the dose of LT4 in hypothyroidism from a cohort of 1,864 patients through a comprehensive analysis of electronic medical records. Univariate analysis was conducted to explore the relationships between clinical and non-clinical variables, including weight, sex, age, body mass index, diastolic blood pressure, comorbidities, food effects, drug-drug interactions, liver function, serum albumin and TSH levels. Among the models tested, the Extra Trees Regressor (ETR) demonstrated the highest predictive accuracy, achieving an R² of 87.37% and the lowest mean absolute error of 9.4 mcg (95% CI: 7.7-11.2) in the test set. Other ensemble models, including Random Forest and Gradient Boosting, also showed strong performance (R² > 80%). Feature importance analysis highlighted BMI (0.516 ± 0.015) as the most influential predictor, followed by comorbidities (0.120 ± 0.010) and age (0.080 ± 0.005). The findings underscore the potential of machine learning in refining LT4 dose estimation by incorporating diverse clinical factors beyond traditional weight-based approaches. The model provides a solid foundation for personalized LT4 dosing, which can enhance treatment precision and reduce the risk of under- or over-medication. Further validation in external cohorts is essential to confirm its clinical applicability.
甲状腺功能减退症是一种常见的内分泌疾病,在女性中发病率较高,且随年龄增长而增加。左甲状腺素(LT4)是标准治疗药物;然而,实现临床和生化甲状腺功能正常具有挑战性。因此,开发一个准确的预测LT4剂量的模型至关重要。这项回顾性研究旨在确定影响LT4每日剂量的因素,并通过对1864例患者的电子病历进行综合分析,建立一个模型来估计甲状腺功能减退症患者的LT4剂量。进行单因素分析以探讨临床和非临床变量之间的关系,包括体重、性别、年龄、体重指数、舒张压、合并症、食物影响、药物相互作用、肝功能、血清白蛋白和促甲状腺激素水平。在测试的模型中,Extra Trees Regressor(ETR)表现出最高的预测准确性,在测试集中的R²为87.37%,平均绝对误差最低,为9.4 mcg(95%CI:7.7-11.2)。其他集成模型,包括随机森林和梯度提升,也表现出强大的性能(R²>80%)。特征重要性分析突出显示体重指数(0.516±0.015)是最有影响力的预测因素,其次是合并症(0.120±0.010)和年龄(0.080±0.005)。这些发现强调了机器学习在通过纳入传统基于体重的方法之外的多种临床因素来优化LT4剂量估计方面的潜力。该模型为个性化LT4给药提供了坚实的基础,可提高治疗精度并降低用药不足或过量的风险。在外部队列中进行进一步验证对于确认其临床适用性至关重要。