Suppr超能文献

钩端螺旋体病动力学与预防的海尔斯-乌拉姆稳定性和分岔控制:使用奇异和非奇异核进行建模

Hyers Ulam stability and bifurcation control of leptospirosis disease dynamics and preventations: Modeling with singular and non-singular kernels.

作者信息

Farman Muhammad, Ahmad Aqeel, Atta Usama, Nisar Kottakkaran Sooppy, Ghaffar Abdul

机构信息

Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.

Faculty of Arts and Science, Department of Mathematics, Near East University, Nicosia North Cyprus, Turkey.

出版信息

PLoS One. 2025 Mar 31;20(3):e0314095. doi: 10.1371/journal.pone.0314095. eCollection 2025.

Abstract

Due to its various uses, the dynamical system is a significant research area in the field of mathematical biology. The model is first developed by applying the usual derivative with combined recovery measures of humans as well as animals for leptospirosis transmission and then converted into a generalized form of the fractal fractional sense with power law kernel, exponential law kernel, and Mittag-Leffler kernel. We verify all the fundamental characteristics of the newly developed model for the validation analysis of the system such as equilibrium points, local stability, positivity of solutions, reproductive number, and existence of a unique solution. Also, bifurcation analysis has been used for newly developed systems to observe the impact of each sub-compartment with the effect of different parameters. The results on Hyers Ulam stability are established by utilizing different kernels to observe its stable state. We used a numerical scheme based on the Lagrange polynomials for all three cases of fractal fractional derivatives having different kernels. The efficiency of the fractional operators with comparative analysis of different kernels is shown in simulation form to verify the validity and real behavior of leptospirosis transmission for humans as well as animals. he graphical explanation of our model's solution depicts the effectiveness of our techniques applied and this study helps for future predictions and developing better control strategies.

摘要

由于其多种用途,动力系统是数学生物学领域的一个重要研究领域。该模型首先通过应用常规导数结合人类和动物钩端螺旋体病传播的恢复措施来开发,然后转化为具有幂律核、指数律核和米塔格 - 莱夫勒核的分形分数意义的广义形式。我们验证新开发模型的所有基本特征,用于系统的验证分析,例如平衡点、局部稳定性、解的正性、繁殖数和唯一解的存在性。此外,分岔分析已用于新开发的系统,以观察每个子隔室在不同参数影响下的作用。通过使用不同的核来观察其稳定状态,建立了关于赫尔斯 - 乌拉姆稳定性的结果。对于具有不同核的分形分数导数的所有三种情况,我们使用基于拉格朗日多项式的数值格式。分数算子与不同核的比较分析的效率以模拟形式显示,以验证人类和动物钩端螺旋体病传播的有效性和实际行为。我们模型解的图形解释描述了我们应用技术的有效性,并且这项研究有助于未来的预测和制定更好的控制策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5519/11957339/0199ed1ef0c7/pone.0314095.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验