Suppr超能文献

具有凸发生率的高度非线性皮肤利什曼病传染病模型的定性行为及真实数据。

Qualitative behavior of a highly non-linear Cutaneous Leishmania epidemic model under convex incidence rate with real data.

机构信息

Department of Mathematics, College of Sciences and Arts, Najran University, Najran, Kingdom of Saudi Arabia.

Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10140, Thailand.

出版信息

Math Biosci Eng. 2024 Jan 8;21(2):2084-2120. doi: 10.3934/mbe.2024092.

Abstract

In the context of this investigation, we introduce an innovative mathematical model designed to elucidate the intricate dynamics underlying the transmission of Anthroponotic Cutaneous Leishmania. This model offers a comprehensive exploration of the qualitative characteristics associated with the transmission process. Employing the next-generation method, we deduce the threshold value $ R_0 $ for this model. We rigorously explore both local and global stability conditions in the disease-free scenario, contingent upon $ R_0 $ being less than unity. Furthermore, we elucidate the global stability at the disease-free equilibrium point by leveraging the Castillo-Chavez method. In contrast, at the endemic equilibrium point, we establish conditions for local and global stability, when $ R_0 $ exceeds unity. To achieve global stability at the endemic equilibrium, we employ a geometric approach, a Lyapunov theory extension, incorporating a secondary additive compound matrix. Additionally, we conduct sensitivity analysis to assess the impact of various parameters on the threshold number. Employing center manifold theory, we delve into bifurcation analysis. Estimation of parameter values is carried out using least squares curve fitting techniques. Finally, we present a comprehensive discussion with graphical representation of key parameters in the concluding section of the paper.

摘要

在本研究中,我们引入了一个创新的数学模型,旨在阐明人类皮肤利什曼病传播背后复杂的动力学。该模型全面探讨了与传播过程相关的定性特征。我们采用下一代方法推导出该模型的阈值 $ R_0 $。我们严格探讨了在 $ R_0 $ 小于 1 时无病状态下的局部和全局稳定性条件。此外,我们利用 Castillo-Chavez 方法阐明了无病平衡点的全局稳定性。相比之下,当 $ R_0 $ 超过 1 时,我们在地方和全球稳定性条件下建立了地方和全球稳定性的条件。为了在地方平衡点实现全局稳定性,我们采用了几何方法、拉普拉斯理论扩展,包括一个次要的附加复合矩阵。此外,我们进行了敏感性分析,以评估各种参数对阈值数的影响。我们采用中心流形理论进行分支分析。利用最小二乘曲线拟合技术进行参数估计。最后,我们在论文的最后一节进行了全面讨论,并以图形方式展示了关键参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验