Suppr超能文献

基因COCOA:利用共表达数据检测单个基因的上下文特异性功能。

GeneCOCOA: Detecting context-specific functions of individual genes using co-expression data.

作者信息

Zehr Simonida, Wolf Sebastian, Oellerich Thomas, Leisegang Matthias S, Brandes Ralf P, Schulz Marcel H, Warwick Timothy

机构信息

Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany.

German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany.

出版信息

PLoS Comput Biol. 2025 Mar 31;21(3):e1012278. doi: 10.1371/journal.pcbi.1012278. eCollection 2025.

Abstract

Extraction of meaningful biological insight from gene expression profiling often focuses on the identification of statistically enriched terms or pathways. These methods typically use gene sets as input data, and subsequently return overrepresented terms along with associated statistics describing their enrichment. This approach does not cater to analyses focused on a single gene-of-interest, particularly when the gene lacks prior functional characterization. To address this, we formulated GeneCOCOA, a method which utilizes context-specific gene co-expression and curated functional gene sets, but focuses on a user-supplied gene-of-interest (GOI). The co-expression between the GOI and subsets of genes from functional groups (e.g. pathways, GO terms) is derived using linear regression, and resulting root-mean-square error values are compared against background values obtained from randomly selected genes. The resulting p values provide a statistical ranking of functional gene sets from any collection, along with their associated terms, based on their co-expression with the gene of interest in a manner specific to the context and experiment. GeneCOCOA thereby provides biological insight into both gene function, and putative regulatory mechanisms by which the expression of the GOI is controlled. Despite its relative simplicity, GeneCOCOA outperforms similar methods in the accurate recall of known gene-disease associations. We furthermore include a differential GeneCOCOA mode, thus presenting the first implementation of a gene-focused approach to experiment-specific gene set enrichment analysis. GeneCOCOA is formulated as an R package for ease-of-use, available at https://github.com/si-ze/geneCOCOA.

摘要

从基因表达谱中提取有意义的生物学见解通常侧重于识别统计学上富集的术语或通路。这些方法通常使用基因集作为输入数据,随后返回过度代表的术语以及描述其富集的相关统计数据。这种方法不适用于专注于单个感兴趣基因的分析,特别是当该基因缺乏先前的功能特征时。为了解决这个问题,我们制定了GeneCOCOA,这是一种利用特定上下文的基因共表达和经过整理的功能基因集,但专注于用户提供的感兴趣基因(GOI)的方法。使用线性回归得出GOI与功能组(例如通路、GO术语)中基因子集之间的共表达,并将所得的均方根误差值与从随机选择的基因中获得的背景值进行比较。所得的p值基于它们与感兴趣基因在特定于上下文和实验的方式下的共表达,提供了来自任何集合的功能基因集及其相关术语的统计排名。因此,GeneCOCOA提供了对基因功能以及控制GOI表达的假定调控机制的生物学见解。尽管相对简单,但GeneCOCOA在准确召回已知基因-疾病关联方面优于类似方法。我们还包括差异GeneCOCOA模式,从而首次实现了针对实验特定基因集富集分析的以基因为重点的方法。GeneCOCOA被制定为一个R包以便于使用,可在https://github.com/si-ze/geneCOCOA上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/11964461/19bdba7de3fb/pcbi.1012278.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验