Jayakrishnan Muhunden, Havlová Magdalena, Veverka Václav, Regnard Catherine, Becker Peter B
Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, 82152 Munich, Germany.
Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, 166 10 Prague, Czech Republic.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf202.
Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard chromatin fiber integrity. In Drosophila, the chromodomain protein MSL3 binds H3K36me3 at X-chromosomal genes to implement dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Because depletion of K36me3 had variable, locus-specific effects on the interactions of those readers, we systematically studied K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2, and K36me3 each contribute to distinct chromatin states. Monitoring the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD, and Ash1 revealed local, context-specific methylation signatures. Each methyltransferase governs K36 methylation in dedicated genomic regions, with minor overlaps. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at putative enhancers. The mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.
组蛋白H3赖氨酸36位点(H3K36me3)的甲基化标记着活跃染色质。该标记由表观遗传识别蛋白解读,这些蛋白有助于转录并维护染色质纤维的完整性。在果蝇中,染色体结构域蛋白MSL3结合X染色体基因上的H3K36me3以实现剂量补偿。含PWWP结构域的蛋白JASPer将JIL1激酶招募至所有染色体上的活跃染色质。由于K36me3的缺失对这些识别蛋白的相互作用具有可变的、位点特异性的影响,我们在一个明确的细胞模型中系统地研究了K36甲基化。与主流模型不同,我们发现K36me1、K36me2和K36me3各自促成不同的染色质状态。监测三种甲基转移酶Set2、NSD和Ash1缺失时K36甲基化格局的变化,揭示了局部的、上下文特异性的甲基化特征。每种甲基转移酶在特定的基因组区域调控K36甲基化,重叠较少。Set2主要在转录活跃的常染色质上催化K36me3。NSD在着丝粒周围异染色质内的特定位点以及转录较弱的常染色质基因上放置K36me2/3。Ash1在假定的增强子处沉积K36me1。MSL3和JASPer的定位表明,它们除了结合K36me3外还结合K36me2,这通过直接亲和力测量得到了证实。这种双重特异性将这些识别蛋白吸引到更广泛的染色体位置,并增强了它们作用的稳健性。