Liu Yujun, Wang Kaidong, Wang Weiguang, Kashyap Saarang, Jih Jonathan, Imani Anthony, Hsiai Tzung, Zhou Z Hong
California NanoSystems Institute, University of California at Los Angeles, Los Angeles, 90095, California, USA.
Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, 90095, California, USA.
bioRxiv. 2025 Mar 17:2025.03.14.643408. doi: 10.1101/2025.03.14.643408.
At the onset of the COVID-19 pandemic, the absence of a rapid and highly specific diagnostic method for the SARS-CoV-2 virus led to significant delays in detection, adversely affecting clinical outcomes. This shortfall highlights the urgent need for adaptable, scalable, and reusable diagnostic technologies to improve future pandemic responses. To address this challenge, we developed a renewable electrochemical impedance biosensor device employing a synthetic nucleotide-based therapeutic aptamer (termed 'aptasensor') targeting the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD). We demonstrate that our aptasensor can detect the Omicron BA.2 S protein within one hour and possesses concentration-dependent sensitivity at biologically relevant levels. Notably, the aptasensor is reusable after regeneration by a simple pH 2 buffer treatment. Aptamer binding to the S protein was confirmed by immunogold labeling and visualization by negative-stain electron microscopy. We used cryogenic electron microscopy (cryo-EM) to resolve high-resolution maps of the S protein in both the open and closed conformations and characterized aptamer binding to the up RBD in the open conformation. Taken together, these results establish the versatility and scalability of aptamer-based biosensors, presenting them as a potential transformative diagnostic platform for emerging pathogens. This combination of rapid detection, specificity, and renewable capabilities in a single diagnostic solution marks a significant advance in pandemic preparedness.
在新冠疫情初期,由于缺乏针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒的快速且高度特异的诊断方法,导致检测出现显著延迟,对临床结果产生了不利影响。这一不足凸显了迫切需要适应性强、可扩展且可重复使用的诊断技术,以改善未来对大流行的应对。为应对这一挑战,我们开发了一种可再生的电化学阻抗生物传感器装置,该装置采用了一种基于合成核苷酸的治疗性适配体(称为“适配体传感器”),靶向SARS-CoV-2刺突(S)蛋白受体结合域(RBD)。我们证明,我们的适配体传感器能够在一小时内检测到奥密克戎BA.2 S蛋白,并且在生物学相关水平上具有浓度依赖性敏感性。值得注意的是,通过简单的pH 2缓冲液处理再生后,该适配体传感器可重复使用。通过免疫金标记和负染电子显微镜观察证实了适配体与S蛋白的结合。我们使用低温电子显微镜(cryo-EM)解析了S蛋白开放和关闭构象的高分辨率图谱,并表征了适配体与开放构象中上RBD的结合。综上所述,这些结果确立了基于适配体的生物传感器的多功能性和可扩展性,使其成为新兴病原体潜在的变革性诊断平台。在单一诊断解决方案中兼具快速检测、特异性和可再生能力,这标志着在大流行防范方面取得了重大进展。