Keevers Luke J, Jean-Richard-Dit-Bressel Philip
University of New South Wales, School of Psychology, Sydney, Australia.
Neurophotonics. 2025 Apr;12(2):025003. doi: 10.1117/1.NPh.12.2.025003. Epub 2025 Mar 31.
Fiber photometry is a powerful tool for neuroscience. However, measured biosensor signals are contaminated by various artifacts (photobleaching and movement-related noise) that undermine analysis and interpretation. Currently, no universal pipeline exists to deal with these artifacts.
We aim to evaluate approaches for obtaining artifact-corrected neural dynamic signals from fiber photometry data and provide recommendations for photometry analysis pipelines.
Using simulated and real photometry data, we tested the effects of three key analytical decisions: choice of regression for fitting isosbestic control signals onto experimental signals [ordinary least squares (OLS) versus iteratively reweighted least squares (IRLS)], low-pass filtering, and dF/F versus dF calculations.
IRLS surpassed OLS regression for fitting isosbestic control signals to experimental signals. We also demonstrate the efficacy of low-pass filtering signals and baseline normalization via dF/F calculations.
We conclude that artifact-correcting experimental signals via low-pass filter, IRLS regression, and dF/F calculations is a superior approach to commonly used alternatives. We suggest these as a new standard for preprocessing signals across photometry analysis pipelines.
光纤光度法是神经科学的一种强大工具。然而,测量的生物传感器信号会受到各种伪影(光漂白和与运动相关的噪声)的干扰,这会影响分析和解释。目前,尚无通用的流程来处理这些伪影。
我们旨在评估从光纤光度数据中获取经伪影校正的神经动态信号的方法,并为光度分析流程提供建议。
使用模拟和真实的光度数据,我们测试了三个关键分析决策的效果:将等吸收控制信号拟合到实验信号上时回归方法的选择[普通最小二乘法(OLS)与迭代加权最小二乘法(IRLS)]、低通滤波以及dF/F与dF计算。
在将等吸收控制信号拟合到实验信号方面,IRLS优于OLS回归。我们还展示了通过dF/F计算进行低通滤波信号和基线归一化的效果。
我们得出结论,通过低通滤波、IRLS回归和dF/F计算来校正实验信号中的伪影,是一种优于常用替代方法的途径。我们建议将这些方法作为光度分析流程中信号预处理的新标准。