Suppr超能文献

NutriRAG:通过检索方法释放大语言模型在食物识别和分类方面的强大功能。

NutriRAG: Unleashing the Power of Large Language Models for Food Identification and Classification through Retrieval Methods.

作者信息

Zhou Huixue, Chow Lisa S, Harnack Lisa, Panda Satchidananda, Manoogian Emily N C, Li Minchen, Xiao Yongkang, Zhang Rui

机构信息

Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA.

Division of Diabetes, Endocrinology and Metabolism, Department of Medicine University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

medRxiv. 2025 Mar 20:2025.03.19.25324268. doi: 10.1101/2025.03.19.25324268.

Abstract

OBJECTIVE

This study explores the use of advanced Natural Language Processing (NLP) techniques to enhance food classification and dietary analysis using raw text input from a diet tracking app.

MATERIALS AND METHODS

The study was conducted in three stages: data collection, framework development, and application. Data were collected via the myCircadianClock app, where participants logged their meals in free-text format. Only de-identified food-related entries were used. We developed the NutriRAG framework, an NLP framework utilizing a Retrieval-Augmented Generation (RAG) approach to retrieve examples and incorporating large language models such as GPT-4 and Llama-2-70b. NutriRAG was designed to identify and classify user-recorded food items into predefined categories and analyzed dietary patterns from free-text entries in a 12-week randomized clinical trial (RCT: NCT04259632). The RCT compared three groups of obese participants: those following time-restricted eating (TRE, 8-hour eating window), caloric restriction (CR, 15% reduction), and unrestricted eating (UR).

RESULTS

NutriRAG significantly enhanced classification accuracy and effectively identified nutritional content and analyzed dietary patterns, as noted by the retrieval-augmented GPT-4 model achieving a Micro F1 score of 82.24. Both interventions showed dietary alterations: CR participants ate fewer snacks and sugary foods, while TRE participants reduced nighttime eating.

CONCLUSION

By using AI, NutriRAG marks a substantial advancement in food classification and dietary analysis of nutritional assessments. The findings highlight NLP's potential to personalize nutrition and manage diet-related health issues, suggesting further research to expand these models for wider use.

摘要

目的

本研究探索使用先进的自然语言处理(NLP)技术,通过饮食追踪应用程序的原始文本输入来加强食物分类和饮食分析。

材料与方法

该研究分三个阶段进行:数据收集、框架开发和应用。数据通过myCircadianClock应用程序收集,参与者以自由文本格式记录他们的饮食。仅使用经过身份识别消除的与食物相关的条目。我们开发了NutriRAG框架,这是一个利用检索增强生成(RAG)方法检索示例并整合GPT-4和Llama-2-70b等大语言模型的NLP框架。NutriRAG旨在将用户记录的食物项目识别并分类到预定义类别中,并在一项为期12周的随机临床试验(RCT:NCT04259632)中从自由文本条目中分析饮食模式。该RCT比较了三组肥胖参与者:遵循限时进食(TRE,8小时进食窗口)、热量限制(CR,减少15%)和无限制进食(UR)的参与者。

结果

NutriRAG显著提高了分类准确率,并有效地识别了营养成分和分析了饮食模式,如检索增强的GPT-4模型获得了82.24的微F1分数所示。两种干预措施都显示出饮食变化:CR参与者吃的零食和含糖食物较少,而TRE参与者减少了夜间进食。

结论

通过使用人工智能,NutriRAG在营养评估的食物分类和饮食分析方面取得了重大进展。研究结果突出了NLP在个性化营养和管理与饮食相关的健康问题方面的潜力,表明需要进一步开展研究以扩展这些模型的应用范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8634/11957177/aa36570b6887/nihpp-2025.03.19.25324268v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验