Suppr超能文献

共同设计用于数字暴饮暴食干预的预测数据可视化。

Co-designing prediction data visualizations for a digital binge eating intervention.

作者信息

Ortega Adrian, Rooper Isabel R, Massion Thomas, Azubuike Chidibiere, Lipman Lindsay D, Lakhtakia Tanvi, Camino Macarena Kruger, Parsons Leah M, Tack Emily, Alshurafa Nabil, Kay Matthew, Graham Andrea K

机构信息

Center for Behavioral Intervention Technologies, Northwestern University Feinberg School of Medicine, 750 N. Lake Shore Dr., 10th Floor, Chicago, IL 60611, USA.

Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL 60611,USA.

出版信息

Transl Behav Med. 2025 Jan 16;15(1). doi: 10.1093/tbm/ibaf009.

Abstract

BACKGROUND

Digital interventions can leverage user data to predict their health behavior, which can improve users' ability to make behavioral changes. Presenting predictions (e.g. how much a user might improve on an outcome) can be nuanced considering their uncertainty. Incorporating predictions raises design-related questions, such as how to present prediction data in a concise and actionable manner.

PURPOSE

We conducted co-design sessions with end-users of a digital binge-eating intervention to learn how users would engage with prediction data and inform how to present these data visually. We additionally sought to understand how prediction intervals would help users understand uncertainty in these predictions and how users would perceive their actual progress relative to their prediction.

METHODS

We conducted interviews with 22 adults with recurrent binge eating and obesity. We showed prototypes of hypothetical prediction displays for 5 evidence-based behavior change strategies, with the predicted success of each strategy for reducing binge eating in the week ahead (e.g. selecting to work on self-image this week might lead to 4 fewer binges while mood might lead to 1 fewer). We used thematic analysis to analyze data and generate themes.

RESULTS

Users welcomed using prediction data, but wanted to maintain their autonomy and minimize negative feelings if they do not achieve their predictions. Although preferences varied, users generally preferred designs that were simple and helped them quickly compare prediction data across strategies.

CONCLUSIONS

Predictions should be presented in efficient, organized layouts and with encouragement. Future studies should empirically validate findings in practice.

CLINICAL TRIAL INFORMATION

The Clinical Trials Registration #: NCT06349460.

摘要

背景

数字干预可以利用用户数据来预测他们的健康行为,这可以提高用户做出行为改变的能力。考虑到预测的不确定性,呈现预测结果(例如用户在某一结果上可能改善的程度)可能会很微妙。纳入预测会引发与设计相关的问题,比如如何以简洁且可操作的方式呈现预测数据。

目的

我们与一种数字暴饮暴食干预措施的终端用户进行了协同设计会议,以了解用户将如何与预测数据互动,并为如何以视觉方式呈现这些数据提供参考。我们还试图了解预测区间将如何帮助用户理解这些预测中的不确定性,以及用户将如何看待他们相对于预测的实际进展。

方法

我们对22名患有复发性暴饮暴食和肥胖症的成年人进行了访谈。我们展示了5种基于证据的行为改变策略的假设预测显示原型,以及每种策略在未来一周减少暴饮暴食的预测成功率(例如,本周选择致力于自我形象改善可能会使暴饮暴食次数减少4次,而改善情绪可能会使次数减少1次)。我们使用主题分析来分析数据并生成主题。

结果

用户欢迎使用预测数据,但希望保持自主权,并在未达到预测时尽量减少负面情绪。尽管偏好各不相同,但用户通常更喜欢简单且能帮助他们快速比较不同策略预测数据的设计。

结论

预测应以高效、有条理的布局并带有鼓励性地呈现。未来的研究应在实践中对研究结果进行实证验证。

临床试验信息

临床试验注册号:NCT06349460。

相似文献

5
Stigma Management Strategies of Autistic Social Media Users.自闭症社交媒体用户的污名管理策略
Autism Adulthood. 2025 May 28;7(3):273-282. doi: 10.1089/aut.2023.0095. eCollection 2025 Jun.

本文引用的文献

8
Nudge Units to Improve the Delivery of Health Care.推动单位以改善医疗保健服务。
N Engl J Med. 2018 Jan 18;378(3):214-216. doi: 10.1056/NEJMp1712984.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验